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FINAL REPORT
SIMULATED TRAJECTORIES ERROR ANALYSIS PROGRAM
VOLUME II: ANALYTICAL MANUAL

By Gentry Lee, Dr, Doyle Vogt, Ralph Falce,
Shearon Pearson, and Eva Demlow
Martin Marietta Corporation

SUMMARY

Volume I of this report under NASA-Langley Contract NAS1-8745
contains a user's manual and guide to the operation of the Simu-

lated Trajectories Error Analysis Program (STEAP) developed under
~the contract. This volume explains the mathematical techniques
used in the program and gives typical results, with explanations,
that demonstrate the efficacy of the program.

Chapter I contains a general description of STEAP and intro-
duces the operational modes of the program. Chapter II contains
the symbols used through the text. In Chapters III thru VI the
analytical techniques used for the development of each operational
mode of the program are presented in detail. Chapter VII contains
a discussion of many test runs made with the program and is in-
tended to demonstrate the multifarious uses for the program. Chap~
ter VII also includes additional information of a general nature
that should speed the program user's development of an intuitive
feel for the program,



I. INTRODUCTION

The Simulated Trajectories Error Analysis Program (STEAP) is
comprised of four subprograms or operational modes. The first
mode, which is used as a subroutine by all the remaining modes,
is the trajectory mode. The second mode or subprogram is called
the targeting mode. The third operational mode of STEAP has been
designated as the error analysis mode. The fourth and final mode
in which the program can be exercised is the simulation mode.

The following subsections describe each of these four operational
modes.

A, Trajectory Mode

The trajectory mode essentially computes an n-body trajectory
using the varicentric or virtual mass technique explained in
reference 1. Input to the trajectory mode is some set of initial
conditions that may have resulted from the targeting mode, plus
parameters necessary to specify the computational operations used
by the program. No actual integration is performed by the tra-
jectory mode; the key idea of the virtual mass technique is to
build up an n-body trajectory by using sequences of conic sections
around a moving effective force center called the virtual mass.

At each instantanecus moment along the trajectory, the combined
effects of all the gravitational bodies can be viewed as resulting
from a fictitious body, of unique magnitude and position, which
is called the virtual mass. The computational procedure then
agssumes that over a small time interval, the motion of the space-
craft can be represented by a two-body conic section arc relative
to this virtual mass., The complete trajectory is thus generated
by a series of small arcs pieced together in steps while updating
the position and magnitude of the effective force center. The
main advantage of the virtual mass technique is that numerical
integration of the differential equations is not necessary.

The trajectory mode has access to an ephemeris subroutine that
calculates, for a given date, the conic section orbital elements
of the planets. This ephemeris subroutine using orbital elements
gives an adequate representation of the state of the solar system
for the computation of interplanetary trajectories. If the user
desires, each of the planets can be set in a fixed ellipse referred
to some epoch for speedier computation.



Another significant feature of the virtual mass technique for
generating n-body trajectories is its flexibility. By varying a
simple control parameter related to the time increment over which
the virtual mass position and magnitude are assumed fixed, tra-
jectories ranging from a series of relatively few conic section
arcs (an approximate solution) to highly accurate orbits can be
generated. Thus, by using virtual mass concepts, one can pre-
determine the accuracy needed for a particular mission analysis

study, and hence, vary the computational time needed to generate
the trajectory. ‘

B. Targeting Mode

The targeting mode of STEAP is responsible for the generation
of interplarnetary mission injection conditions. Specifically, the
targeting mode computes the injection position and velocity which,
when propagated forward along an n-body trajectory, yields a tra-
jectory satisfying specified targeting conditions.

The mathematical model for the trajectory is set by desig-
nating the computational step size to be used by the virtual mass
subroutine and the particular gravitational bodies to be included
in the integration. The launch data, launch planet, target date,
and target planet are also specified. The resulting targeted
trajectory then meets these constraints as well as some set of
target conditions.

Six options are permitted in specifying these target condi-
tions. The first two of these options, which are generally an-
cillary to the others, are sometimes useful by themselves. In
these options the injection conditions corresponding to a crude
patched conic trajectory from the launch planet to the target
planet are generated. These conditions are the injection posi-
tion, velocity, and time consistent with an internally-supplied
launch profile originating from Cape Kennedy on the desired date.
In the first option, conditions relevant to an n-body trajectory
are generated; in the second option conditions useful for exact
patched conics are produced.

The four basic targeting options are all built on n-body tra-
jectories resulting from the virtual mass subroutine. The second
and third options involve the impact plane parameters B-T and
B°R and the time of arrival at the target planet sphere of in-
fluence tgy® In the second targeting mode option, injection con-

ditions are generated that, when propagated along an n-body tra-
jectory, satisfy target values B:T and B-R to prescribed
tolerances while satisfying the time constraint only approximately.



The third option forces the satisfaction of the time constraints
as well, In the fourth and fifth options the target parameters
are the radius of closest approach Topo the inclination (with
respect to the target planet equator) at closest approach iCA’

and the time at closest-approach t In the fourth option these

 TcA’
target parameters are met approximately; in the fifth they are
satisfied to within specified input tolerances.

The targeting program uses numerical differencing (on the in-
jection velocity components) in an iterative process to generate
the desired injection conditions for the four basic targeting op-
tions. It therefore requires an initial iterate to start the pro-
cedure. To allow versatility in the types of problems handled
by the program, alternative methods of specifying these condi-
tions are provided. 1In the usual problem, no first guess is
available and the program merely generates the point~to-point
conditions described as the first targeting option. A second op-
tion, in which the first guess injection conditions are input to
the program, allows for the convenient retargeting of nominal

trajectories and refined targeting of partially targeted trajec-
tories.

Thus the targeting mode offers a convenient and flexible tool
for the generation of the trajectories needed by an analyst of
interplanetary missions and is an integral part of STEAP.

C. Error Analysis Mode

The error analysis mode is essentially a tool for preflight
mission analysis and is primarily concerned with covariance ma-
trix propagation along selected interplanetary trajectories. The
output of an error analysis run contains information about orbit
determination uncertainties in the neighborhood of the target
planet, likely fuel expenditures at guidance corrections, and
probabilities of target condition miss resulting from execution
errors at simulated midcourse maneuvers.

The options in the error analysis mode are quite numerous.
State transition matrices can be computed by any of three tech-
niques=-analytical patched conic, analytical virtual mass, or
numerical differencing. The measurements being processed in an
optimal recursive filter may be range-rate or range and range
rate from one or more (up to three) stations on a rotating earth,
as well as onboard measurements of apparent planet diameter and
three star planet angles. Measurement schedules are completely



arbitrary and measurement accuracies are wvariable input. Pertur-
bation of the equations of motion by the addition of dynamic or
process noise is also permitted in the error analysis mode.

The error analysis mode also has several auxiliary capabili-
ties that allow for special events where additional computations
are made. There are three events available to the user--eigenvec-
tor, prediction, and guidance--the times of which are specified
in the input. At an eigenvector event, the basic computational
cycle is interrupted and the covariance matrix of navigation un-
certainty is computed. Then the associated eigenvalues and eigen-
vectors of the position and/or velocity uncertainties are calcu-
lated. At a prediction event, the error analysis mode interrupts
the basic cycle and computes the predicted navigation uncertainty
at some future critical time. When a guidance event occurs, the
error analysis mode also interrupts the basic cycle and adds a
maneuver execution uncertainty to the propagated covariance ma-
trix. Since no actual guidance corrections are made in the error
analysis mode, modeling of the execution uncertainty is achieved
by considering ensemble errors resulting from four execution error
sources: resolution, proportionality, and two pointing errors.
Two separate options are available for computing the midcourse
execution uncertainty. The computation of the execution error
covariance matrix is dependent upon the choice of guidance policy.
Three guidance policy options are available to the program: fixed
time of arrival, two variable B plane, and three variable B plane.

In addition to the foregoing options, the treatment of aug-
mented states is possible in the error analysis mode. Exercising
the augmented state options in the error analysis mode results in
the propagation of uncertainties related to measurement biases and
parameter errors of various types, as well as position and velo-
city. The nonaugmented state vector consists of position and velo-
city and has a 6 x 1 dimension. Ten augmented state vector options
are available ranging from an 8 x 1 state vector to a 17 x 1 state
‘vector. Included as augmentation parameters under the various op-
tions are biases in the gravitational parameters of the Sun and
target planet, as many as nine station location coordinate biases,
and six measurement biases., Also included in several of the aug-
mented state options are three target planet ephemeris biases that
model uncertainties in target planet semimajor axis, eccentricity,
and inclination.



D. Simulation Mode

The simulation mode of STEAP is the most complex operational
mode. The primary purpose of the simulation mode is to test the
orbit determination process exemplified by the error analysis mode.
In the error analysis mode, navigation uncertainties are simply
propagated along a nominal trajectory. In contrast, the simula-
tion mode determines the validity of the statistical estimatioen
process by simulating an "actual" trajectory. The results given
by the error analysis mode become meaningful only when, in the
simulation mode, the orbit determination process converges to the
"actual" trajectory.

The computations in the simulation mode are similar to those
in the error apalysis mode, except for the computation of many
additional quantities. Four related trajectories are carried
through the simulation mode basic cycle: the Mactual” trajectory,
the estimated trajectory, the original nominal trajectory (used
for guidance), and the updated nominal trajectory.

There are four types of events that can be used in the simu-
lation mode. Three of the events are the same as in the error
analysis mode~—-eigenvector, prediction, and guidance. One addi~
tional event that can be exercised in the simulation mode is a
quasi~linear filtering event. The eigenvector and prediction
events in the simulation mode are the same as they were in the
error analysis mode.

When a guidance event occurs in the simulation mode, an “ac-
tual" midcourse correction is made based on one of the three pos-
sible guidance policies. The resulting execution error statis-
tics are computed and an "actual" correction is then calculated
that simulates midcourse engine performance. At a quasi~linear
filtering event, the nominal trajectory is updated by taking into
account the estimated deviation from the most recent nominal tra-
jectory. The reason for including a quasi-linear filtering event
is to be able to compute more. accurate state transition matrices
and check the effect of updating the nominal trajectory on: the
occurrence of divergence in the filter. ‘

The available options in the simulation mode are identical
with those in the error analysis mode. Measurement accuracies
can be varied as well as measurement schedules. The state tran-
sition matrix options (choice of three) are available as well as a
a choice of three guidance policies. The augmented state vectors



treated by the simulation mode gives the user the option of esti-
mating such parameters as planetary ephemerides and masses, meas-
urement biases, and station location errors, as well as the basic
six-vector of position and velocity,
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impact plane parameters

actual state vector deviation from most recent nominal
trajectory at time tk

observation matrix at time tk+1
Kalman gain matrix at time t
gatn K+l

covariance matrix of navigation uncertainty at the time

S

covariance matrix of navigation uncertainty after the
measurement has been processed at the time t

k41
initial covariance matrix
dynamic noise matrix

execution error matrix

covariance matrix of a zero mean Gaussian white noise
corrupting the measurement

actual covariance matrix of a zero mean Gaussian white
noise corrupting the measurement o '

regidual uncertainty matrix
initial state vector
original nominal state vector

most recent nominal state vector



r guidance matrix

ka estimated state vector deviation from most recent nominal
trajectory

AV midcourse correction velocity increment

Cr+1 measurement residuals

n variation matrix of B*T and B*R

U3 gravitational parameter of jth body

Vit1 sampled measurement noise

¢k+l, Kk state transition matrix relating the times‘tk+l and tk

wk+l actual unmodeled accelerations



ITII., TRAJECTORY MODE - ANALYSIS

The trajectory mode of STEAP computes an n-body trajectory for
an infinitesimal spacecraft through the use of the varicentric or
virtual mass concept. As explained in detail by Novak in refer-
ence 1, the essential idea of virtual mass n-~body trajectory com—
putations is that, at any instant of time, the gravitational forces
exerted by all the governing bodies can be resolved into one ef-
fective vector emanating from a virtual mass whose position and
magnitude are uniquely determined. Over small time intervals,
therefore, the motion of the spacecraft can be represented as a
two-body conic section arc around the moving and varying virtual
mass. The computational algorithm of the STEAP trajectory mode
uses this concept in determining the n-body spacecraft trajectory.

Novak's original work proved the validity of the virtual mass
approach for the restricted three~body problem. The trajectory
mode of STEAP extends its applicability to general n-~body problems.
Modeled in the trajectory mode are the best available mean conic
section orbital elements of each of the planets in the solar sys-
tem plus the Earth's moon. These are available to the trajectory
mode through an ephemeris subroutine and permit the determination
of realistic interplanetary trajectories.

The basic concepts of virtual mass n-body trajectory computa-
tion are reviewed here for reference. In addition, the computa-
tional algorithm at each interval along the trajectory is presented,
step by step, just as it appears in the trajectory mode of STEAP.

For more details concerning the underlying concepts, see reference
l.

Consider the vector differential equations for the motion of
an infinitesimal spacecraft under the influence of n attracting
bodies to be given by:

2 led)
1
i i=1 ?i - ¥s|3 ()

-9
where re is the position vector of the spacecraft in some ref-
erence coordinate system, ui is the gravitational attraction of

.th . , . . s
the i governing body, and f; is the position vector of the

. th .
i body in the same reference system. It is easy :to show that

an equivalent set of equations can be written as:
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The final form of equation (2), which is easily recognized as
the differential equation for two-body motion, suggests the essen-
tial idea of virtual mass computation for n-body trajectories.
Over intervals where u, and '?& can be treated as constants,

the motion is two-body with respect to this magnitude and position
of the virtual mass. The computation of the n-body orbit in the
trajectory mode results from plecing together two-body arcs around
varying magnitudes and locations for the virtual mass. The way

in which each two-~body arc is calculated is discussed in the com-
putational algorithm to follow. ‘

A close inspection of the above equations demonstrates that
the location and magnitude of the virtual mass has the desired
limiting properties., When the spacecraft is within the influence
of one dominant body, the virtual mass position and magnitude ap-
proximate those of the dominant body. In a transition region, two
or more bodies may contribute significantly to the location and
magnitude of the virtual mass.

The computational scheme used within the trajectory mode of
STEAP is presented in the following paragraphs. ' Emphasis is placed
on the procedure used for determining each individual two~body arc
in the sequence. The decision concerning the length of the interval



is made before entering the computational algorithm and is based

on a fixed true anomaly passage with respect to the virtual mass.
Thus, when the spacecraft is near the virtual mass (near a planet
for interplanetary applications), smaller steps are taken to ensure
the accuracy of the computation. Over the heliocentric portions

of an interplanetary flight, when the spacecraft is far from the
virtual mass location and the trajectory is essentially a helio-~
centric ellipse, larger computational intervals are automatically
used.

.Within each computing interval, the motion of the virtual mass
is assumed to be constant velocity with a constant mass magnitude.
Two approaches to determining this constant velocity and mass mag~
nitude were analyzed by Novak (ref. 1). One is called the iterative
method and. the other noniterative. The noniterative computation
uses the values for the virtual mass velocity and mass magnitude
at the beginning of the time step for the entire computation in~
terval., Then, at the beginning of the new time step, new values
are calculated and assumed consistent with the new position of the
spacecraft. This method results in position discontinuities in
the virtual mass trajectory since the initial values, rather than
any computed mean values, are used over the step. The spacecraft
trajectory itself is still continuous, but it is being based on a
discontinuous virtual mass trajectory.

In the iterative method "average" values for the virtual mass
velocity and mags magnitude are used over the computing interval,
The wvalues of L and [ at the end of the interval are ini~

tially estimated and then iteratively improved to force consist-
ency between the virtual mass and spacecraft trajectories. The
iterative method is used in STEAP; its computational algorithm is
presented here, step by step.

th , "

1) At the beginning of the n~ time interval the acceler-

ation terms from the previous time interval are calcu-
lated as

) ;3—1 _ ;3—1 _ ;3-1 (Atn-l>
m E B B
- -1\ 2
er @flﬂ
(7N
uq-l _ un--l _ ﬁn—l (Atn-l)
v v v
;n - E B B
Vo (Atn—l>2
At the first time interval ;v = 0 and uv = 0,
av ' av
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2) Assuming a second order variation with time, an ini-
tial guess for the final position and magnitude of the
virtual mass is made by using the equations,

=T 4T () +T (a)?
E B B av
. . , (8)
voo=u_ +u (At) +u (At)
VE vB VB vav

The superscripts n have been dropped for convenience.

All the succeeding equations are for the nth time
interval unless otherwise specified. The subscripts
B and E refer to the beginning and end of the com-
putational interval.

3) Using the assumed position and mass magnitude of the
virtual mass at the end of the time interval, the as-
sumed average velocity and mass magnitude for the vir-

- tual mass over the computational interval may be cal-
culated as

> ->

. r, -t

; - E B

At
av
(9)

. =Cu. +((1-C)u
Vav Vg Vg’

where C; linearly interpolates the virtual mass mag-
nitude to some value between the initial and final
values (0 < C; < 1).

The initial velocity of the spacecraft with respect
" to the virtual mass is now based on this assumed av~-
erage velocity and is given by

]

Hye

3
Iy’ s, v (10)
SB B av

Hye

4) The Keplerian vector (represents twice the areal rate)
for the computing interval is next computed as

®
> o> >
r

k=r % (10



Then the eccentricity vector is determined from

-> > >
r k xr
Vs Vs
> B
&= - - = (12)
r H
Vs vav
B

The magnitude of the eccentricity wvector, Z, repre-~
.sents the eccentricity of the conic section and the
orientation of the vector is toward the conic section
periapsis.

5) The final position and velocity of the spacecraft with
respect to the virtual mass is calculated next. An
intermediate variable Ar is used which must be re-
lated to the desired At for the interval, The value
At determines the time or true anomaly increment along
the conic section arc., Again assuming a second order
variation,

AT = At + « At? (13)

where «k 1is computed from information about the pre-~
ceding interval as

© T AEAt)ét (14)
The final position T must lie in the plane of mo-
Vs
> E s
tion defined by T, and T, and hence can be
Sy Sy

expressed as a linear combination of the two,

> ) - 5 >
r, = B r, + At r, B 9, (15)

E °p 5p Sg

tH

where the quantity B dis given by,

k2 !
B = 5 (16)
e
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6)

7)

Then the velocity of the spacecraft with respect to
the virtual mass at the end of the interval is

->
T
Vs
> >
k xt e + E
T
L] VS
> B

T = (17)
VSE; (kz/u‘V )
av

The final position and velocity of the spacecraft in
the reference coordinate system are now computed from

-> > -
rs = rv + rv
E Sg E
5 5> 5 (18)
r = r + r
s v v
E SE av

It is necessary to evaluate the conic section time of
flight so that «k may be found to use in the next
iteration. First, some preliminary orbit variables
must be determined. The in-plane normal to the major
axis is

By
i

- (19)
T

The length of the semimajor axis is given by

k?_' )

b = e e# 1

(11 )

av
(20)

b, = 2 e =1
i r -kz/u > i = B,E

v v

: Si av



The projection of the radius vector orthogonal to the
major axis, divided by b is given by-

- -
ner
v
, cH
X, == , i = B,E (21)
i
The mean angular rate is
by (1 - e?)
k b > e#l
Wy = (22)
%3 e =1

where Wy < 0 for hyperbolic orbits. The eccentric

anomaly is given by,

sin—! Xi’ e <1
ka/u * X
Vv i
E;, = < , e=1 (23)
3
i=B,E
sinh™! X, e > 1
\
Then
M, = E; - eX;, i =B,E (24)

and finally the conic section time of flight is given
as

Mg~ M

M

AT = ty - £ = (25)

The intermediate variable «k, to be used in the next
interval is calculated as

- At -~ At
(At)?

K

(26)
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8) The final positions and velocities of the planets are
now calculated from the ephemeris subroutine and re-
turned to the virtual mass routine.

9) The final position and mass magnitude of the virtual
mass are now recalculated from the assumed position
of the spacecraft at the end of the interval and the
planetary ephemerides by using equation (2). The ve-
locity and magnitude rate of the virtual mass are com=
puted from '

5> > .
M-r M
. v s
i . e:
VE MS
Q@7
Vv .
= M e + '}fﬁ
v VE rv MS
Sy
where
. n . Vi
- ui -+ - SE
M= : L TR T
! E "L
=L 8g E
vV,
n i
My E
M = 3
s Ty Iy
i=1 ( SE> SE
- >
Vis ’ 3 ris . ris
E E E

10) After this last computation, Step 9, one complete iter-
ation has been obtained. The values of the final posi-
tion and magnitude of the virtual mass that was just
calculated is compared to the one assumed in the com-
putation of the spacecraft trajectory. If they do not



agree to within a set tolerance, the new values of

rvE, uVE, and k are returned to Step 3 and another
iteration is performed. However, it should be pointed
out that Step 8 is to be omitted from future iterations.
The final positions of the planets do not differ from
one iteration to the next since the final time is fixed.

11) After two iterations, the required quantities are

stored for the next time interval and the algorithm
returns to Step 1.

More complete details for the above computational algorithm
may be found in Novak's report (ref. 1). One point worth mention-
ing at this juncture concerns the use of the words "accuracy level"
when referring to an orbit computed by the trajectory mode. As
was mentioned earlier, the step size used in the virtual mass cal-
culation of n-body trajectories refers to the true anomaly arc,
with respect to the virtual mass, that is kept fixed throughout
the trajectory. Thus, a fixed true anomaly arc of 1 mrad means
that each individual computing interval, using the algorithm de-
fined above, results in a two-body arc around the effective force
center of 1 mrad. If the fixed true anomaly arc is 10 mrad, then
clearly fewer computational intervals are used and the resulting
trajectory, neglecting computer noise, is less accurate.

An external accuracy level is input to the program, where this
- value is subsequently changed into a fixed true anomaly arc for
the computing intervals. An external accuracy of 2.5 x 107 , for
example, corresponds to a true anomaly arc of 16.57 mrad; similarly,
an external accuracy level of 1 x 10~° corresponds to a fixed true
anomaly of 3.6 mrad. For the n-body problem the external accuracy
level is a dummy variable; it was initially set up to represent
the accumulated percentage position error for a restricted three-
body problem after one orbit. Thus lower accuracy levels imply
lower amounts of arc for fixed time anomaly used in the computa-
tions and, consequently, more accurate trajectories that require
more computer time. Throughout this report, when referring to the
computational interval size used by the trajectory mode or sub-
routine, the phase accuracy level is employed.

17
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IV, TARGETING MODE - ANALYSIS

A. Statement of Problem

The mathematical formulation of the targeting problem results
in a classical two point boundary value problem. The motion of
the infinitisimal probe moving under the gravitational attractions
of n-bodies is governed by the nonlinear differential system

3
T

<

=

n

<

uy (?i(t) - }’) £, (e) - T (28)

i=1
where My and ;i(t) are resgpectively the (known) gravitational

constant and position vector of the ith gravitatiohal body. An
initial time to and a target time tT are specified along with

a set of target conditions

-2 [; (t1) V(tr), tT] =0 (29)

The solution of the targeting problem is the determination of a
set of initial (injection) conditions ?;, Vg such that integra-

tion of the system (28) using the initial conditions

v (to) =V, (30)

yields solution values at t = tT consistent with the target con-
straints (29).



The system (28) being of sixth order implies that (generally)
six independent constraints define a solution, The target con-
straints to be considered in this analysis are either two or
three-dimensional. Hence to ensure that the problems are not
underdetermined, additional constraints must be placed on the ini-
tial conditions (30). Therefore the injection position ?5 is

forced to satisfy constraints consistent with the general mission
requirements and a standard launch profile originating from Cape

Kennedy. 1In the case of a two dimensional target constraint simi-
lar restrictions are placed on the z-component of injection velo-
city. With these additions the targeting problem is well-defined.

The standard procedure may now be summarized. From the general
mission requirements (launch data, encounter planet, encounter
time) a realistic injection position vector (and z~component of
injection veloecity) is computed. Using these as constraints algpg
with the exact target conditions (29), the injection velocity V0

is determined which solves the two point boundary value problem
(28), (29), and (30).

B. General Method of Solution

A comprehensive survey of current techniques applicable to
the two-point boundary value problem was made before selecting the
numerical differencing algorithm as the approach to be used in the
targeting program. The alternative techniques considered will be

presented before proceeding to a discussion of the algorithm cho-
sen.

Five general approaches were considered applicable to the solu-
tion of the targeting problem but inferior to the numerical differ-
encing scheme ultimately selected. These candidate methods included
the adjoint method, the perturbation function method, quasi-lineari-
zation, invariant imbedding, and patched conic approximations.

- In the adjoint (ref. 2) and perturbation function (ref. 3)
methods, linearized equations (specifically the adjoint and per-
turbation equations) governing the dynamics of small perturbations
about a current iterate would be integrated to determine correc-
tions to that iterate., However the inclusion of linear differen-—
tial equations would necessitate an additional integration pro-
gram as the virtual mass routine could not perform this integra-
tion. The time constraints in the target conditions also add a
great deal of complexity when using these methods. Furthermore

these techniques offer no apparent advantages over numerical dif-
ferencing.
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In quasi~linearization (ref. 4), the approach is to replace
the nonlinear system of equations by an approximating linear sys-
tem (linearized about the current iterate) so that the relative
simplicity of this revised system can be exploited to yield im-
proved injection conditions. Quasi-linearization has better con-
vergence properties than any of the other proposed methods but
unfortunately suffers from serious defects in this application.
The state of the current iterate at any time along the trajectory
must be available to the integrator. Since an interplanetary tra—
jectory requires not only a large number of integration steps, but
also a varying size for these steps, this represents a burden both
in computer storage and computation. In addition, quasi-lineari-
zation requires an independent integrator.

In invariant imbedding (ref. 5), the two-point boundary value
problem is replaced by a system of first order partial differen-
tial equations that are solved successively in one-directional
sweeps. Its main advantage lies in the fact that it is not an
iterative procedure. However the application of this method to
such a multidimensional problem introduces great analytical and
numerical difficulties. Furthermore there is no control on the
final tolerances of target errors.

The last method tried involved using patched conic approxima-
tions to estimate the velocity corrections iteratively. Thus the
method would employ analytic tools such as Danby's matrizant (ref.
6). This would be an acceptable approach if the target conditions
were all position or velocity dependent. However, because time
appears explicitly in the target congtraints and because there
are no formal analytical time relationships, this approach was
also discarded.

The numerical differencing algorithm is conceptually quite
simple. It is an iterative scheme that generates progressive sets
of injection velocities, each set leading to reduced errors in the
target conditions. The procedure therefore requires an initial

approximation to the injection veloecity. This is no problem, how-

ever, as the technique used to compute the injection position vec-
tor also generates an acceptable zero iterate injection velocity.

Let the target conditions be denoted T = (Tl, To, T3>. Let

-
T be the injection position vector and let

Fk) (V ORI <k>)
X y 4



_ be the kth iterate of the injection velocity. Let the integration
of the equations of motion (28) using (?0, »(k)) as injection
conditions yield target values = (T1, Tz, T3). If the error

* (k)
AT =t - T 1is acceptable, then V

is returned as the desired
solution. :

If the error E} is unacceptable, the numerical differencing
algorithm generates a correction AV = (AVX, AV , AVZ) to V(k)

which should lead to improved target conditions. The trajectory
target values are obviously functions of the injection velocity

v defining the trajectory. Thus

= T (¥)

Expanding this in a Taylor series about the kth iterate injection
velocity and retaining only linear terms yields the approximation

[0 @] -2 [59] + 2 [O] . @

aVv

where

] 2 [e]

of o] - | 22 o] 2 [yw] 22 [y
\

a’* dV oV v L .
y z
2V v oV -

" Implicit in this equation is the assumption that the required
velocity change lies in a linear region in the injection condi-
tion -~ target condition manifold.

(31
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9T,

The partials §V£ are now approximated by numerical differ~
o

encing (from which the procedure derives its name). The equations
of motion are integrated using as initial conditions

-> -
T (t ) =1
o

o]
vx (to) = vx(k) + svx
_y (k)
vy (to) = Vy
v (t ) =V (k)

Z [o] Z

Because of the (small) perturbation in Vx(to)’ the resulting

(k); denote them by
+ & = (Tl + 8Ty, Tp + 6Ty, T3 + 6T3). Then by estimating

target values will differ slightly from T
(k)
T

" the differentials by the numerical differences, the approximations

result

9T, 8T, 8T, 48T, 3T3 6T

W 3V AV BV V. SV
X X X X X b4

A similar procedure is used to evaluate the remaining partial
derivatives occurring in equation (31). Denoting

8Ty 8Ty 6T
V. V. 8V
x 'y

Z

8T, 8T, 8T,
V. V. 8V
X y z

§T3- 8T3 6Ts
8V A &V,
N y

Equation (31) may now be rewritten



P70 4] -5 59 4o

>

) > >1=(k) - >
The correction AV is to be chosen so that TV " + AV| = 1,

Substituting this into the above equation and rearranging yields

- - > -
At =1 - T = 9 AV

If ¢ is nonsingular the preceding equation may be solved for the

.
correction ~ AV resulting in

and the (k + 1) st diterate is then given by g(k + L §(k) + AV.

The entire process is repeated until an acceptable iterate is gen-
erated.

It is important to recall the assumptions made in this model
to pinpoint where trouble might arise and cause the procedure to
fail (or diverge). The linearity assumption in deriving equation
(31) is probably the major problem. If that assumption is bad,
the entire analysis is in error. If the magnitude of the required

A% is large, the omission of the second order terms in AV in
equation (31) would again be unjustified. However experience has
shown this to be an unusual event. The approximation of the par-
tials by their corresponding numerical differences is another po-
tential problem. However the fact that the program allows the
increment &V by which the velocities are perturbed to be input
permits the selection of a reasonable &V for this computation.
Finally, the matrix ¢ may be singular. Again, experience has
shown this to be quite rare. If this did occur changing the mag-
nitude of the &V or reading in perturbed values for the injec-
tion veloetity could remove the problem.

One .safeguard is included in the program to minimize the effects
of any of the above faults. A scalar measure is assigned to the
target conditions of each nominal. If the error in the resulting
correction is increased, the correction is reduced by a quarter.

The process is repeated until a correction is found that does de~
crease the error.
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C. General Definition of Target Conditions

The four basic target conditions are divided into two classes:
the sphere-of-influence conditions and the closest-approach con-
ditions. The sphere~of-influence conditions are based on the im—

pact plane parameters E'% and B'R introduced by Kizner (ref.
7). Because there is some ambiguity in the general definitions
of these parameters, the exact parameters as used throughout this
.report will now be defined (fig. 1).

From the point of intersection of the probe trajectory with
the target planet sphere—of-influence the trajectory is assumed
to be hyperbolic with the target planet as the prime body. One

of three primary axes, the S—axis, is constructed parallel to the
incoming asymptote and passing through the center of the target

planet. The impact plane is constructed perpendicular to the S-
axis and passing through the center of the target planet. The
intersection of the ecliptic plane with the impact plane forms

Ecliptic plane

Impact plane

Figure 1. Impact Plane Parameters
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a line that‘defines the %—axis. For definiteness, if ﬁ is the
planet normal to the ecllptic plane, then the direction of T

is governed by S X K. Finally, the R—ax1s 1s defined to make

the RST system right-handed, i.e., R = S X T The miss parameter

B is the vector lying in the impact plane from the origin to the
intersection of the approach asymptote with that plane. The impact

plane parameters B- T and B R are now given by the standard
definitions. The third sphere~of-influence condition is the time
at which the sphere-of-influence is encountered by the probe. In

the first major targeting option, the parameters B'T and B'R

are used as targets while tSI is met only approximately. Thus

. . A~
Ty = B°R and 15 = § T and the matrix ¢ appearing in equation
(31) is only 2 x 2. 1In the second optlon all three constraints

are met, i.e., 71 = B T Ty = B- R and 13 = SI’ and ¢ is 3x3.

The definitions of the closest-approach conditions are much
more straightforward. The first parameter Tea is the radius of

closest approach. This is simply the minimal distance between

the probe and the target planet during the trajectory. The vec-

tor position and velocity at this point (with respect to the tar-—

get planet) are used to compute the instantaneous orbital plane.

The angle between this orbital plane and the planet's equatorial
plane defines the second parameter iCA’ the inclination at closest

approach., Finally the last parameter is the time at closest

t

CA?
approach. In the third of the four basic options the three target
conditions Ty = Topr T2 T iCA’ Ty = tCA are met approximately;

in the fourth they are met to specified tolerances determined by
the input.

D. Generation of Patched Conic Injection Conditions

The injection position vector and the zero-iterate injection
velocity vector are computed from a patched conic approximation to
the interplanetary trajectory using a realistic launch profile from
Cape Kemnedy. These injection conditions are not patched conic
conditions in the strict sense; when propagated forward in a patched
conic they do not satisfy the mission requirements. A bias is in-
cluded in the injection velocity which, while corrupting the patched
conic model, more nearly approximates the veloeity required by an
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n-body trajectory satisfying the mission. To distinguish these

conditions from actual patched conic conditions, they are termed
polnt-to~point conditions. The point-to~point conditions are gen=-
erated in the SPARC program developed by JPL. A rigorous analysis
may be found in reference 8. However, for completeness, the rele-
vant details will be repeated here,

1, Heliocentric phase.~ Given a launch date t;, a launch planet
P;, an encounter date t;, and an encounter planet Py, a rough
approximation to the interplanetary trajectory is easily obtained.
The assumption is first made that the trajectory is governed only
by the gravitational attraction of the sun, and therefore may be

represented by a conic having the sun at one focus. Let the posi-
tion of P; with respect to the sun at the time t; be denoted

Kl. Similarly define EZ as the position of P, at the time t,.

The heliocentric central angle V¥ 1is defined by

> > ~1
cos ¥ = Rl'R2 (R]_Rz)

sin ¥ = sgn \(ﬁl X ﬁz)'ﬁ' (l-—cos2 W)%

A,

where K is the unit normal to the heliocentric ecliptic plane.

The unit vector W normal to the probe's orbital plane is now
defined by

“« > > . -1
W= Rl X R2 (Rle sin ‘P)

Finally, the inclination of the orbital plane with respect to the
ecliptic plane is given by

-1 P
i = cos (W'K ) 0<izx<I

The semimajor axis a of the heliocentric ellipse is deter-
mined from Lambert's theorem: the transfer time between any two
points on an ellipse is a function of the sum of the distances of
each point from the focus, the distance between the points, and
the semimajor axis of the ellipse. Thus

> -
tp - t; = f (31 + Ry, |Rp - Ry, a)



This equation is solved iteratively to obtain the semimajor axis
a. Battin (ref. 9) has demonstrated that the eccentricity e is

actually a function of a. Using his procedure the eccentricity
is computed.

The state of the probe at any point along the heliocentric
trajectory may now be computed. The true anomaly v correspond-
ing to a given radius R 1is given by

2 (1) — &

cos Vv =
eR

The path angle I at that point is then determined from

5 (1a2) 7 -%
sin ' = R l-e (2a—R) e sin v

-1 -1
The heliocentric speed is given by V = Mg (ZR - a ﬂ where

Mg is the gravitational constant of the sun. The vector velocity

is then given by
> -1 (° > >
V ="VR Wx R/ cos T+ R sin T

This allows the computation of the velocity ?1 of the probe (with
respect to the sun) along its trajectory at the point of departure

from the launch planet. The hyperbolic excess velocity ﬁhL is

then determined from

V.. =%V, -V
h ! LP

where ?LP is the heliocentric velocity of the launch planet at
the time of launch.,

2. Near launch planet phase.- Having computed the approximate
hyperbolic excess velocity required for the mission, the near
launch planet trajectory may be computed.

The unit vector in the direction of the outgoing asymptote is

-~ _ -1 e
§=Vir Vho
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'S

The unit wvector N mnormal to the trajectory plane is then con-

strained by the requirements NN =1 and N'S = 0. The compo-
nents of N are thus restricted by

NZ = Co8 ¢L s1n'2L

]

N {-NSS + 8 [1-(82+N2)
vy zZy zZ— X z Z

N —(Nysy - stz) sx‘l

where ¢L is .the latitude of the launch site and ZL is the

launch azimuth., The second of these equations restricts the launch
azimuth to satisfy

L
: } (sx2 + syz)

£ 02 - 2 -2
sin EL < (l SZ )cos ¢L
In this program the ''short coast" option is selected by choosing
the ambiguous sign in the second component equation to be negative,

A "due east" launch is generated when possible by setting 5= 90°,

If this violates the above constraint, the nearest possible azimuth
is chosen.

The eccentricity of the orbit is determined from the equation

= 2 —1
e 1+ RP VhL H

. where RP’ the periapsis radius, is set internally and will be

discussed in a subsequent section. The true anomaly of the out-
going asymptote is given by

cos v = -e~}
8

In essence this defines the position of the periapsis. The stand-

~

ard unit vectors P (toward periapsis) and Q (normal to P in
the plane of the trajectory) are defined by



>

Lae]
L]
V2381

~

cos v + (é pS N) sin Vg

sy

Q=Ssinv_ - (S X N) cos v
s s
These vectors now determine the near launch trajectory. For a

given true anomaly v the magnitudes of the vector position and
velocity are respectively

R = p-(1 + e cos v)"l

-

%3

<
it

(€3 + 2u, R‘1>

where C3 = %—VﬁL. The normalized position and velocity vectors
are .

R=Pcosv+Qsinwv

V==Psin(v-T)4+Qcos (v-T)

where the path angle T is defined by

cos I = (puP)V'lR’l, - %— T <5

The true anomaly at injection vy is an internally supplied
constant. Hence the injection position and velocity may be easily

computed using the equations of the previous sectionm.

The angle WLSP between the launch site and the orbit periap-

sis is glven by

cos ¥

LSP RLS

i
Iy
O
o
[A
=

sin ¥y op = Rig
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where RLS is the unit vector to the launch site = (cos@ cosf

L L’
cos@L sinOL, sin@L). The angle WI between launch and injection
is then Y¥_ = 2II - WLSP - Vy- The coast time is then calculated

from Tc = IWI - (?1 + Wz)l ké' Here Y¥; and VY, are the angles
of first and second burn respectively, and k§ is the inverse of

the parking orbit coast rate and all are set internally in the pro-
gram,

~

The injection latitude @I is given by sin @I = (Rl)z’
- %'S-QI i_%u The right ascension of injection @I is defined by

cos O = (RI)x<[kRJ)i + (Rl)iJf%
sin 0 = (RI)y {(RJ)i + (Rl)i'—%

The injection longitude is given by

OI=OI—QL-wtb+6L

where BL is the longitude of the launch site and wty is the

time from launch to injection = t; + TC + to. The injection azi-
muth angle is calculated from

7

Sz - cos’(\)S - vI) sin @I

cos L. =
I sin (vs VI) cos @I

The launch time is given by

T, = w1 (eL -8 - GHA) mod 21



where GHA is the Greenwich hour angle at Oh UT of the launch day.

Specifically, GHA =

2.9015 x 10713° 12
1, 1950.

3. Internally supplied constants.—

a4 0 < GHA < 2T, where Td

TI = TL + tb

discussed previously are set internally in the program.

100.07554260° + 0.985647346° T. +

d

The injection time is calculated from

= days past 0h January

Several of the parameters

These

parameters and their values are listed in the following tabula-

tion.

Definition
Angle of first burn
Time of first burn
Angle of second burn
Time of second burn
Inverse parking orbital rate

True anomaly in hyperbolic orbit at
injection

Perifocal distance of escape hyper-
bole = parking orbit radius

Latitude of launch site

Longitude of launch site

Target = Target =
Inner Outer
Planet Planet
17° 23°

500 sec 700 sec

8° 25°

100 300
14.689  14.689

3.7° 12.0°

6560 km 6560 km
28.317°  28.28°

279.457° 279.5°

.The values used here are chosen so that the point~to-point condi-
tions agree with the published SPARC data on Venus and Mars mis-
However, they may be easily changed to any values desired.

sions.
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E. Auxiliary Computations in Targeting

1. Computétion of impact plane parameters.— The impact plane par-

> = > °
ameters BT and B'R are functions of the position and velocity

> >
vectors rg. and Ver (with respect to the target planet) re-

corded at the point of intersection of the interplanetary trajec-—

tory with the target planet sphere of influence. The computation
proceeds as follows:
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Now E'T and g'R are defined by the standard formulas.

2. Computation of closest approach conditions.~ In computing

rCA’ iCA’ and tCA to construct the closest approach state

transition matrix, it is necessary to compute the exact time of
closest approach. Otherwise, the state transition matrix may be-
come invalid. The virtual mass integration program records the
values Toas VCA’ tCA when the distance from the target planet

to the probe first begins to increase. Since a more accurate
evaluation is required, the following iterative scheme is used to

refine these esti@ates: Now rr = ?-%. Differentiating yields
. .o = > -> e .
2 + rr = V2 + r-V. Now replacing V by =-urr 3 leads to

r = 1 {VZ —ur~l —f2

Approximating r (t + At) = r(t) + r(t) At, the correction At

which should result in T (tC + At>‘i f(tc) is given by
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where ;(tC) is given above. Although obtaining a better esti-.
+ ’ 3

mate of tC is most important, the correction to To, 1s also

made : ‘
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3. Conversion of closest approach to sphere of influence taigets.—
In both the third and fourth targeting options (rCA’ iCA’ tCA)

it is efficacious to first translate the target conditions to equi~-
+A

+ﬁ
valent conditions in BT, B*R, and target first to these

st

auxiliary conditions. The computations for this conversion are
based on patched conic trajectories. Figure 2 illustrates the
"problem.

» S (approach asymptote)

Orbital plane 2

~ Orbital
~ plane 1

AFigFre 2. - Spherical Trigonometry for Closest Approach Conversion

Let the planeocentric ecliptic position and velocity vectors

at arrival at the target planet sphere of influence be given by
&> -
Tor and Vgye Let the target conditions be denoted Topo iCA’
tCA' Let the matrix defining the transformation from equatorial



coordinates to ecliptic coordinates be given by M The

EQEC”
approach asymptote may be approximated quite well by 751. . Con~-
verting to equatorial coordinates this becomes
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The (equatorial) declination and right ascension of S are given
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Figure 2 illustrates that for a given inclination iCA’

0 f-iCA :_%3 there are four possible orbits having that inclina-
tion and including S in the plane of motion. The trajectories

could lie in either of orbital planes 1 or 2 and be either posi-
grade or retrograde. To avoid ambiguity, the program considers

i=4d., (under the constraint 0 i 2 H/Z) to require the
posigrade orbit in orbital plane 1 detailed in the figure;
i = —iCA specifies the posigrade orbit in orbital plane 2, and

i=4+ (H - iCA) prescribes the two retrograde orbits. Interest

will be focused only on the illustrated case for the purpose of
discussion.

Consideration of Figure 2 demonstrates the target inclination
iCA must be less than the declination of the incoming asymptote,

i.e.,

iCA <8

If this constraint is not satisfied, the target inclination is set
equal to the declination before proceeding. The angle A® 1is
deduced from spherical trigonometry as ’
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20 = sin™! (EEE—§¥~)
tan tCA

Therefore, the ascending node of the orbit (with respect to the
equator) is given by

Q=06 - A0

The normal C to the orbital plane in equatorial coordinates may
now be written

C; = S3 sin R Cr) = ~-S3 cos & C3 =S8y cos & — 5 sin {

The matrix MEQIM defining transformations from the equatorial

plane to the impact plane is then constructed. The normal to the

~

orbital plane in impact plane coordinates CIMP = MEQIM C may

then be used to compute B, the angle in the B-plane from the

T-axis to the impact parameter B (see figure 3). B 1is then given
by

8 = %-+ tan”} [(CIMP)Z/«CIMP)L

The magnitude of % is given quite simply as

B =t (1 + 2up rag vg%)

Then the target B'T and B'R are given by
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Figure 3.- Projection of Orbital Plane and Normal on Impact Plane

To translate the time at closest approach tCA into a con-

sistent time at sphere of influence tSI the elements of the
e > d

rgp» Vgp are computed as
described in Section E.l. The hyperbolic time At along that hy-

perbola from periapsis to r = Tor is then determined from

hyperbola determined by the state
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4. OQuter targeting — As explained above, all of the four basic
targeting options require zero iterate trajectories that inter-

sect the target planet sphere of influence. Since the point-to-.

point injection conditions will not always satisfy this require-
ment, some provision must be made to refine those conditions to
obtain acceptable. ones.  An effective algorithm has been con-
structed to accomplish this.
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When any trajectory has not encountered the target planet
sphere of influence within a prescribed time, the closest approach
- o
conditions rCA’ VCA, |
fluence is then constructed about the target planet, having a ra-
dius 1.2 times the value Tep just noted. The trajectory will

are noted. An “artificial" sphere of in-

then intersect this artificial sphere of influeﬁce even with small
perturbations in the injection velocity. The normal targeting pro~

+4\ +A
cedure is now used under target option 2 (B'T, B°R, tSI) with

the target conditions

BT =0

B'R =0

. ) (t ) ) 1.2 rCA - RSI
ST s1)o Ver

where (tSI)o denotes the target time at the actual sphere of in-
fluence and RSI is the actual sphere of influence radius. The
injection conditions consistent with these "artificial' target con-
ditions will in general yield a trajectory intersecting the actual
sphere of influence of the target planet. The trajectory may then
be targeted to the desired target conditions (see fig. 4).

Figure 4.- Outer Targeting



F. Specifics of Targeting Scheme

The standard numerical differencing scheme described in Section
B has one glaring weakness: it is extremely time consuming. A
simple numerical example illustrates the problem. The integration
time for a reasonably accurate Mars trajectory (accuracy level =

5 x 10~%, 2000 integration increments, five gravitational bodies)
might be 30 sec (CDC 6500). The construction of the state tran-—
sition matrix would require three integrations or 90 sec. Each
iteration would, therefore, consume two minutes of computer time.
Therefore, if two iterations in outer targeting and five itera-
tions in normal targeting are required, the total computer time
used in solving this problem is 14 minutes., For this reason, the
standard method has been modified.

The modification is based on the premise that the characteris-
tics of ‘a low integration accuracy trajectory mirror those of a
higher accuracy trajectory targeted to identical mission constraints.
Thus, a state transition matrix computed about a targeted trajectory
at a low accuracy level should remain valid for similar trajectories
at higher accuracy levels. This assumption has been verified by
experimentation.

The targeting scheme proceeds as follows. A trajectory is tar-
geted to the desired target conditions at a low accuracy level,
constructing the state transition matrix at each iteration as usual.

The state transition matrix Q(l) evaluated about the targeted
trajectory at this first accuracy level is stored, The injection

velocity v(l) of the targeted trajectory is theﬁ integrated for-
ward at a higher accuracy level. Because of the change in the in-
tegration step size, the target conditions will not be realized.

However, the matrix é(l)
jection velocity v(z) for that level. This process is repeated
until the desired accuracy level is reached. Then the state tran-

. 1 , . . :
gsition matrix ®( ) is used iteratively to obtain a targeted tra-
jectory at the final accuracy level.

may be used to predict an improved in-

The time savings is significant. Returning to the numerical
example, suppose that intermediate accuracy levels requiring
250 500, and 1000 integration increments were used. Seven itera-
tions at the first level would use 140 sec (5 sec per integration
x four integrations per iteration). One iteration at each of the
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next two levels requires a total of 25 sec. Finally five itera-
tions at the final accuracy level requires 150 sec (five inte-
grations at 30 sec per integration). Thus, the total computer
time of 6 minutes is less than half the previous time.



V. ERROR ANALYSIS MODE - ANALYSTS

A, Summary

The error analysis mode of STEAP is concerned with propagating
uncertainties along n-body trajectories., No actual estimation is
performed; the covariance matrices of state vector uncertainties
are the primary output. ‘

There are three main quantitative results that come from the
error analysis mode, all of which are very important for trajectory
design during preflight mission analysis. The first output is the
orbit determination or mavigation uncertainty at selected trajec-
tory epochs. The processed covariance matrix of orbit determina-~
tion uncertainty gives a probabilistic answer, for a specific
reference trajectory, to the question '"how well will the actual
trajectory be known after optimal processing of the tracking in-
formation?" A second result obtained from the error analysis mode
is equally important. Orbit determination uncertainties, although
they are significant, do not by themselves answer all the perti-
nent questions related to mission success. Another question that
must be answered is, '"how close will the actual trajectory come
to meeting the specified target conditions?"

To answer the second question satisfactorily, a midcourse cor-
rection process must be modeled in the error analysis mode. Be-
tween injection and the first midcourse correction, for example,
tracking information is processed to reduce uncertainties asso-
ciated with the estimated state vector. Because these uncertain-
ties are independent in nonadaptive data processing schemes, they
can be propagated in the error analysis mode. At the time of the
first midcourse correction, the navigation uncertainty covariance
matrix defines, probabilistically, the efficacy of the navigation
algorithm. However, errors at injection, referenced to the nominal
trajectory and related to the answer to the second key question,
have propagated forward without any change due to the tracking
data. Guidance corrections are made to ensure that the trajectory
returns to the desired target conditions. The navigation uncer-
tainty at the time of midcourse correction plus the error in per-
forming the midcourse are the key contributors in determining,
from the error analysis mode, how well the given guidance and
navigation process will satisfy specified target conditions.
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The error analysis mode also permits probabilistic determina-
tion of likely fuel budgets needed for interplanetary missions.
Without performing any estimation, the most likely magnitudes of
the midcourse correction magnitudes can be computed along with
their variances, This computation permits the mission analyst to
calculate reasonable fuel loading requirements that are critical
in the design of an actual system,

Two matrix quantities are carried throughout the error analysis
mode. One is the nominal or reference state vector, which is
needed for many computations, and the second is the covariance
matrix of navigation uncertainties associated with the state vec-—
tor. The state vector is comprised of spacecraft position and
velocity plus any augmentation parameters included in the analy-
sis. The covariance matrix is a square, symmetric, positive defi-
nite matrix of associated uncertainties whose dimension corresponds
to that of the state vector. It is implicit in the error analysis
mode, when treating augmented states, that the underlying estima-
tion algorithm is operating in a "solve for'" mode; that is, the
resulting uncertainties correspond to what occurs if the augmented
parameters were actually estimated by the orbit determination pro-
cess.

The computational operation of the error analysis mode may be
separated into two distinct calculation procedures, The first of
these is called the basic cycle and refers to the process of propa-
gating uncertainties from one measurement to the next., A Kalman
recursive filtering algorithm is used to process the measurement
and compute the state vector associated covariance matrix that be-
gins the next step in the basic cycle. Events refer to computa-
tions in the error analysis mode that are not simply propagations
of the navigation uncertainty covariance matrix from one measure-
ment to the next and subsequent optimal filtering of the new meas-
urement. In the error analysis mode, three kinds of events are
permitted,

The three events allowed in the error analysis mode are eigen-
vector events, prediction events, and guidance events. At an
eigenvector event, the state vector associated covariance matrix
is diagonalized to reveal geometric information about the size
and orientation of the position and velocity navigation uncertain-—
ties. . At a prediction event, the most recent covariance matrix
is propagated forward to some critical trajectory epoch, usually
a guidance correction time, to determine predicted orbit determina-
tion uncertainties in the absence of further measurements. When
a guidance event occurs, a rather lengthy computational process



determines the likely magnitude of the guidance correction to-
gether with statistics of execution error based on an underlying
physical model for the correction process.

Essentially then, the error analysis mode processes tracking
information from various sources in the basic cycle and, at events,
produces additional data not specifically related to the tracking
sequence, This structure for the error analysis mode was designed
to permit easy modification of the calculational procedure.

The next section of this chapter details the Kalman recursive
estimation algorithm that is assumed, in the error analysis mode,
to be the underlying orbit determination procedure., Sections C
and D detail the manner in which the state transition and obser-
vation matrices, needed for the basic cycle, are computed in the
error analysis mode. Section E presents the analytical equations
used by the program at a guidance event to compute the most likely
correction direction and magnitude as well as the execution error
matrix, All three guidance policy options are discussed. The
final two sections of the chapter explain the equations used for
the other two events and the manner in which augmented states are
handled by the error analysis mode.

B. Recursive Estimation Algorithm

As was mentioned in the preceding section, the basic cycle of
the error analysis mode is concerned with determining uncertainties
associated with the state vector as a result of processing subse-~
quent bits of tracking data. The recursive estimation algorithm
refers to the computational procedure used in propagating the state
vector covariance matrix of navigation uncertainties from one meas-
urement to the next.

‘Let X (tk) = Xk be the nominal state vector at the time ¢t

+ . s . .
~and define Pk as the navigation uncertainty covariance matrix

k

after processing the measurement at the time ¢ Assume that the

K*
next measurement is made at the time tk+1 and that linear per-—
turbations in that measurement are related to linear perturbations

in the state vector by the observation matrix Hk+l' Assume fur-

ther that the state transition matrix ®k+1 k relating perturba-
Hd
tions about the nominal trajectory at the times tk+l and tk
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has been calculated from the dynamic equations. If Qk+l K is
b ]
a matrix of dynamic noise (or process noise) corrupting the dy-

namic equations over the given time interval, and Rk+1 is the

covariance matrix of a zero mean, Gaussian white noise process
corrupting the measurement at tk+l’ then the standard Kalman re-

cursive algorithm, which is assumed in the error analysis mode of
STEAP, is given by

- + T

Pt = %1,k P %,k T %l k

. - T - T -1
K1 = Prar B [Hk+1 Prs B F Rk+1]

+4-

Prt1 = Prrr 7 Mo B P

where P;+l is the covariance matrix of navigation uncertainty
at the time rio o processing the new measurement
£ Frty PTiOT Fo P 8 > KNen

is the Kalman gain matrix that optimally weights the dynamic and
. , + . ; : .
measurement information, and Pk+l is the navigation uncertainty

matrix after the new measurement has been considered.

The above algorithm is well-known; details of its derivation
may be found in reference 10. The new nominal state vector is
obtained from the virtual mass n-body trajectory subroutine and
is used in the computation of both ®k+l,k and Hk+l’ as will

be explained in subsequent sections. The STEAP has modules that
perform these calculations based on the kind of measurement taken
at tk+l and the method of state transition matrix generation

being used for a particular run. The computation of Qk+l K

within the program will be explained in the following paragraphs.

A phenomenon known as divergence in the filter has been noticed
by many persons using the fundamental recursive algorithm for or-
bit determination or state vector estimation. The basic cause of
divergence is modeling insufficiency and many separate categories
of this insufficiency can be enumerated. The causes of the diver-
gence problem and possible solutions to it are given in greater
depth in the analytical discussion of the simulation mode. The
purpose of including a dynamic noise matrix Q 1in the error



analysis mode is to check the effect of dynamic model insufficiency
on the key outputs of the error analysis mode. Some dynamic or
unmodeled noise always corrupts an interplanetary trajectory;

what is interesting, from the point of view of the error analysis
mode, is how the primary quantitative outputs are affected by
various levels of dynamic noise.

The dynamiec noise model used in the error analysis mode is
somewhat arbitrary and its interpretation is difficult. Over any
time interval At between measurements, the process noise matrix
Q is computed from three input constants that remain the same
throughout a trajectory run. These three constant inputs Kl, Kz,

2 R
and K3, whose units are km seca, roughly correspond to variances

of assumed unmodeled accelerations. The dynamic noise matrix Q
added over any interval At is diagonal and all zero except for
the upper six diagonal terms corresponding to increased uncer-
tainties in position and velocity. Specifically, if At 1is the
interval between measurements, the six nonzero terms of Q are
given by

p%a

At

Q33 473 (32)

Some explanation of this form for the dynamic noise is doubt-
less necessary., It was decided early in the design of the pro-
gram that the physical interpretation of arbitrary dynamic noise
must be made possible by relating the Q matrix, in some fashion,
to unmodeled accelerations. Similarly, it appeared that the mag-
nitude of the dynamic noise should be a function of the specific
time interval over which it was added; in other words, the dynamic
noise added when two days were between measurements should be
greater than that added when only two hours separated the two
measurements.
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- The first attempt to satisfy these two constraints resulted
in the assumption that the unmodeled accelerations could be repre—
sented as biases with zero mean and variances Kl’ KZ’ K3.

sider, for example, a vector random variable (6X, 8y, 62)T with
variances

Con-

2.. 2. _ 2..
sX 1 8Y 2 SZ 3

and correlation coefficients set equal to zero. If these accelera-
tions represent biases, then over any interval At they are re-
lated to position and velocity uncertainties through

6% = 8% (at); &% = 3 (6x) (rt)?

and similarly for the other components. Under this model for the
dynamic noise, the Q matrix would be the same as that given in
equation (32) except for the completely correlated off-diagonal
terms resulting in

1 3

_ 1 3 _ 1 _ 1
Qg =7 Ky A7, Qpp = 5 Ky A7, Qg = 5 Ky At

3

Clearly if the unmodeled accelerations are indeed biases, the &X

and dJX uncertainties due stricﬁly to the dynamic noise must be
completely correlated.

This initial model for the dynamic noise was unsatisfactory
for two reasons. First, the resulting error analysis was forced
to assume that the unmodeled acceleration was a constant bias
throughout the trajectory as well as over each interval. The
physics of the problem suggests that unmodeled accelerations are
probably constant biases over short periods, but over an entire
trajectory they probably vary considerably. Secondly, if the
values for Kj are large enough for the dynamic noise to signifi-

cantly affect the processed covariance matrices,’théir total
correlation induces an unrealistically high correlation between
the same terms in the resulting uncertainty matrices.

A more careful modeling of the stochastic process was dis-
carded due to the arbitrary nature of the Q matrix. The dy-
namic noilse matrix was chosen as in equation (32) because un-
coupling the position and velocity uncertainties due to unmodeled
accelerations retained a physical feel for the meaning of Q and
permitted its computation to be viewed as a combination of random
and bias error in the unmodeled accelerations.

(33)

(34)

(35)



C. State Transition Matrices

This section presents the different techniques that are avail-
able for computing state transition matrices in STEAP, State
transition matrices are used to relate linear perturbations about

nominal state vectors at various specified times., If i(t) is the
nominal state vector at any time t and =x(t) 4is a linear per-
turbation vector, then the matrix ¢ that satisfies

X (b)) T 0 (Per ) % (%)

between two selected epochs tf and ti is called the state

transition matrix. As another way of defining the state transition

matrix, consider the nominal state vector i(t), to be a function

(36)

of some set of initial conditions i(to>. For any arbitrary time ¢,

a relationship exists such that

X (t) = f F(_ (to)]

Then taking differentials, one obtains

R L O IGENES
oK evaluated
along
nominal

From equation (38) and the linear difference equation (36), one
can see that the state transition matrix ¢ 1is given by
- Of

® (tes ty) -

evaluated along
nominal

State transition matrices are discussed in depth in reference 10.

(37)

(38)

(39)
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Three methods for computing state transition matrices are
available in STEAP. The first two methods are called analytical
patched conic and analytical virtual mass. 1In the analytical
methods, it is assumed that the interplanetary trajectory is a
two-body conic section over a small time interval and that per-
turbations about the nominal trajectory can be related by using
the basic analytical two-body matrizant. The third method for -
determining state transition matrices uses a numerical scheme that
is often referred to as numerical differencing.

1. Analytical patched conic.~ The basic idea in using an
analytic patched conic state transition matrix is that over a
small time interval of an interplanetary flight, the motion of a
spacecraft is essentially a two-body conic section. Based on ’the
foregoing assumption., Danby (ref. 6) has developed a set of gen-
eral equations for determining the state transition matrices by
the use of matrizants. The matrizant of two-body motion is used
in STEAP for both analytical methods of computing state transition
matrices, The basic fundamentals and equations of Danby's method
will be presented here. Complete derivations are given in refer-
ences 6 and 11.

Letting x(t) vrepresent a column vector composed of po-
sition and velocity deviations at time ¢, x(to) the same for

time to’ and g the deviation of a set of six geometrical ele-

ments, an equation that relates small deviations in position and
velocity at two different times can be written as

x(t) = M(t)g = MMt (t5) %(t0)

This equation is identical with the linear perturbation equation
(36) except that now

© (t, t ) = M(e)M T )

The reference coordinate system considered here has the X-axis
pointing toward periapsis for the conic, the Z-axis along the
angular momentum vector, and Y forming the triad. Danby (ref. 6)
calls this the "orbital reference system."

(40)

(41)



The geometrical orbital elements defined by g may be set
in a column vector as,

o -

+
610 nér

g = sa (42)‘

2a

aedr
h

8q

where ﬁo is the mean anomaly at an arbitrary epoch; a 1s the

semimajor axis of the orbit; e 1is the eccentricity of the orbit;
§p, &8q, and 6r are infinitesimal rotations about the reference
axis; h is the angular momentum per unit mass; and n is the
mean motion of the orbit. The auxilary parameter n is defined

by (1 - 82)1/2. Avoiding the algebraic manipulations, the re-

sultant M matrix as given by Danby (ref 6) has the following
form,

X YX-h 0 2X%X-3tX YY 0
¥ XX 0 2Y-3tY -Y{-2h O
0 0 Y 0 0 -X
M(E) =| . . . .y e (43)

X YXHYX 0 -X-3tX Y4YY 0

Y X%XX 0 -Y-3tY -XY-¥X O

(]
(@]
.
(@
(e

1
>
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where X, Y, and Z are the components of position and velocity
along the particular orbit, t is some specified epoch, and the
accelerations are given by

-uX

X =

W
“

R 1is the magnitude of the position deviation represented by

(Xz + Y2 + 22)1/2 and u is the gravitational constant of the
dominant body used in the two-body approximation.

The inverse of the M matrix at the initial time t0 is

given by
-1 T
MU (E)) =AM (t) YT (44)

where A 1is a diagonal matrix of dimension 6 x 6 and has diagonal

components (a/u, a/uh, 1/h, a/u, a/uh, 1/h). vy is given as the
matrix

with I being the identity matrix of appropriate dimension.

The state transition matrix that relates perturbations
about some nominal state vector between two arbitrary times can
now be determined by combining equations (43) and (44). The re~
sulting matrix is referenced to the orbit plane coordinate system
and thus, because all computations in STEAP are performed in the
ecliptic frame, a rotation needs to be included so that

T

=R Q(t’ to)orbit plane R

CI>(t’ to)ecliptic (45)

where R 1s the rotation matrix.

In using the foregoing method for analytical patched conic
determination of the state transition matrices, an automatic¢ check
is made in the program to determine what sphere of influence the
vehicle is in at the time.of computation. The sphere of influence
determines what gravitational mass and dominant body location will
be used to compute the matrizant. It should be stressed that the



particular gravitational constant being used at the time of comput-
ing ¢ 4is chosen at the beginning of the time interval. 1In other

words, if a check is made at tl and the sphere of influence is

that of the Sun and the trajectory at t2 is inside the sphere of

influence of the target planet, then Msun will be used in the

algorithm. ©No significant problems have resulted by using this
approximate strategy, primarily because most of the time intervals
are small when state transition matrices are computed near the
spheres of influence.

The method of computing state transition matrices by the
analytical patched conic technique is assumed in the program un-—
less otherwise specified by the input.

2. Analytical virtual mass.— Computation of state transition
matrices by the analytical virtual mass technique is similar to
the patched conic method. The same general equations developed
by Danby (ref. 6) are also used in determining state transition
matrices using the virtual mass concept.

The virtual mass technique requires that the location and
magnitude of the virtual mass, as calculated by the wvirtual mass
subroutine, be stored for use in the computation of ¢. Once the
computational intervals and values for the location and magnitude
of the virtual mass have been determined for the nominal trajec-
tory these same quantities are used to generate the state transi-
tion matrix. Hence, after determining the nominal trajectory, the
nominal state vector X{(t) is available along with a set of
values ?V(t) and uv(t) representing the position and magni-

tude of the virtual mass,

As mentioned previously, the equations for the two-body
matrizant are also employed in this second method of computing
the state transition matrix, However, now the dominant body is
assumed to be the effective force center. Recall that in the
analytic patched conic method, a check was made to determine what
sphere of influence the vehicle was in at the beginning of the
time interval. In using virtual mass concepts to compute the
state transition matrices, a sphere of influence check is avoided.
When calling the state transition matrix module, the gravitational
parameter of the virtual mass u is used instead of u of the
primary attracting body. The lodation of the virtual mass is
likewise used in the determination of ¢ under this method.
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3. Numerical differencing.- The third method of computing
state transition matrices in STEAP involves straightforward numeri-
cal differencing. In the other two methods, the partial derivative

matrix ¢k+1,k satisfying

R
*((er) T 7ox, | F(R) T %k * ()
evaluated along
nominal

was computed from analytic two-body approximations. Numerical
differencing requires considerably more computer time to yield
@ f i i i .
k+1,k rom numerical considerations

To demonstrate numerical differencing, let i(tk) and

X(tk+l) be nominal state vectors at the epochs t and t

k k+1
respectively. Next consider i(tk) + [Xm, 0, 0, 0, 0, .... T,
obtained by adding a small perturbation factor to the first com-
ponent of i(tk). If the virtual mass subroutine is now used to

propagate the new state vector until the time a new state

Ce1?
vector Xl(tk+l) results. Defining the vector AXl by

M) (Btr) = %1 (Bern) ~ X(Brern)

the first column of the state transition matrix ¢ is then equal
to

R |
Cerr,i) = @, HCen)
The process is continued by adding small perturbation fac-

tors to each component of i(tk) separately and using the result-

ing deviations about i(tk+l) to build up the matri# % one

column at a time., Implicit in this development for ¢ is that

the small perturbation factors added to each element of i?tk)
. \

must be of a size satisfying the linearity assumptions.



All three methods of state transition matrix computation
can be used in STEAP. The first two analytic methods use much
less computer time than numerical differencing.

D, Measurement Processing

The computational models used in the error analysis mode for
relating tracking data to the basic nonaugmented state vector are
presented in this section. The tracking module is responsible
for computing at each navigation epoch an observation matrix H
relating uncertainties in the measurements to uncertainties in the
nominal state vector. Linear perturbation theory is employed,
based upon analytic expressions relating the measurements to the
nominal vehicle state. At some time tk’ the observed quantities

can be related to the nominal state Xk by,
Z, = h (Xk) (46)

The relationship between deviations in the measurements and devia-
tions in the nominal state vector can be written by expanding
equation (46) in a Taylor series about the nominal,

zk=_z'k+zk=h(k'k+xk)=h(ik)+9§’,—'xk+o(xf(‘) (47)

Xy

where z represents deviations in the observations., By sub-

k
tracting equation (46) from equation (47) and neglecting higher

order terms O (xi) a relationship between deviations in the

measurements and deviations in the nominal state vector can be
written as,

z, = Hk'xk (48)

where

k | evaluated along the nominal
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and H is an m' x n matrix relating the perturbations. For the
present program Hk can be expressed as

_ 3 (0, D, o, B)

SXk

(49)

e

where D and D are range and range rate, respectively. The
angles o and B are the star-planet angles and apparent planet
diameter.

Three models are used in the tracking module, one a simple
Earth-based tracking station (idealized) at the center of the
Earth that measures range and range rate. The sécond model has
three stations on a rotating spherical Earth that measure range
and range rate. The last model provides the capability for on-
board tracking by measuring three star-planet angles and apparent
planet diameter.

1. Earth-based radar tracking.-~ The idealized station (center
of the Earth) is a secondary model compared to the rest of the
tracking models. It is a simple model that assumes that at each
observation time, the idealized tracking station can look directly
overhead at the vehicle. Let the heliocentric ecliptic position
and velocity of the spacecraft at some time be designated by X,

Y, 2, i, §, 7 and the heliocentric ecliptic coordinateé of

Y Z X

ES E, E’ E’ YE’ ZE- Then

the slant range vectors from the tracking station to the space-
craft are,

the Earth at the same time be X

il
by
1
o
e
il
=
!
i

X

1
<
]
=
] -
0
v e
]
=

Y E E (50)

.
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N
1
N

z

The nominal range measurement is given by,

p = (%2 + T2 + z22)1/2 (51)



Differentiation of the range equation gives the following range
rate expression,

L] . . . . [

- XX+ YY + 22 XX + YY + 72
b= 172 ~ D
(22 +F +72)

The deviations in the range and range rate measurements are ob~

tained by taking the first variation in equations (51) and (52)
with the result,

3D g 4 8D oy, 2D

8D = 5K §X + o7 8Y + -é‘z' 8Z
ab’=—g%ax+—g—%5y+%%az+@—l%si+ D 57+ 22 3
| ' a¥ Y

Evaluation of the partials in equation (53) yields the following
relations,

A _ 3 _X
X Bi D
@ _ 3 _Y
Y 8‘2 D
D _ 3D _ 7
9Z 82 D
WD _ X _XD
oX D D2
3 _ Y _BD
3Y D D2

9z D2
D _m_m_ g
X oY YA

(52)

(53)

(54)
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The first model in the tracking module measures range rate
from the idealized station, hence the observation matrix Hk for

a nonaugmented state vector is given by

_ | 2D 8D 3D 3D 3D 8D
H = 93X Y 9Z .o .o .o (55)
aX 3Y 8Z

The second model gives an observation matrix with dimension 2 x 6
relating range and range rate perturbations from the idealized sta-
tion to perturbations in the basic state vector,

) -
3D 3D 3D
X oy 5z 0 0 O

H = (56)

9D 8D D aD 5D 3D

The partial derivatives, equation (54), are now substituted into
equations (55) and (56) to complete the derivation of the required
observation matrix.

The third and fourth models, which measure range rate and
range~range rate, respectively, from a station on a spherical ro-
tating Earth, are somwhat more complicated. Assuming that a sta-
tion has some altitude h, latitude 6, and longitude ¢ as
shown in figure 5, the geocentric equatorial coordinates of the
station at epoch time T are given by,

Z

Station

Figure 5.- Station Position



N
1

R cos 06 cos ¢

T
YT = R cos B sin ¢ (57)
ZT = R sin 6

where R 1s the geocentric radius of the station given by

R = RE +h and RE is the equatorial radius of the Earth. At

any other time t, the position coordinates of the station are
given by,

X

T R cos 6 cos [¢ + w (£-T)]

Y. = K cos 6 sin [¢ + w (t-T)] (58)

Z., =R sin ©

where w dis the rotation rate of the Earth. The tracking station

-3
velocity is obtained by differentiating X as,

XT
d e _ -—; _ ]
dt (XT) =X =Yy
ZT
- -
Thus,
iT = —~wR cos § sin [¢ + 0 (t-T)]
. (59)
‘YT = uwR cos 8 cos {¢ + w (t=T)]
ZT = 0.

Equations (58) and (59) represent the geocentric equatorial coor-
dinates of a tracking station on a spherical rotating Earth.

Since most of the computational aspects of the error analysis mode
are performed in the ecliptic system, the station coordinates must
be referenced to the ecliptic system. The geocentric ecliptic
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coordinates of the station are obtained by a rotation through the
angle €, the obliquity of the ecliptic., The simple rotation
yields the following time varying station coordinates in the
ecliptic system,

"
it

R cos 6 cos [¢ +w (t=T)]

<
i

g R cos 6 cos € sin [¢ + w (t=T)] + R sin 6 sin ¢
ZS = -R cog 0 sin € sin [¢ + w (£~T)] 4+ R s8in 6 cos ¢
X, = ~uR cos 6 sin [¢ + w (t=T)]

?S = wR cos O cos € cos [¢ + o (t=T)]
25 = ~gR cos 8 sin ¢ cos [¢ + w (t~T)]

The slant range vector p, defined to be the position of
the vehicle with respect to the ground station, can be determined
by considering a vehicle in an orbit about the Sun where the vehi-
cle motion is referenced to the heliocentric ecliptic gystem, The
following sketch reflects the vector relatiomships,

Vehicle

Station

‘Sun

where ¥ are the position coordinates of vehicle, X, are the

E
position coordinates of Earth, ﬁg are the position coordinates
N

of station, and X the vector from station to vehicle,

(60)



The range and range rate from the station to the vehicle
are given by,

P =(%% + ¥ +z2)1/2 (61)
« XX + YY +7Z
p = (62)
: P
where the position and velocity terms are,
X=X~ XE - XS X=X - XE - YS
Y=Y -~ YE - YS Y=Y - YE - YS (63)
Z =17 - ZE - ZS Z=7Z - ZE - ZS
The station coordinates KS are represented by equation (60) and
the coordinates of the Earth, iE’ are determined from an ephemeris
stored in the program. The vehicle position and velocity terms
-> .
X, are generated from the virtual mass subroutine.
The partial derivatives of range with respect to the state
vector are,
0l 21 T T
"X X X XE XS
Ly =1L
Y |~ 5 Y o Y YE YS (64)
ap - -
vy Z Z ~2Z, -2
LBZ_ L i E ‘ S_

59



60

and the corresponding derivatives of range rate are,

-' - o

: -
r.q -._ —_ ._. —. - - o
o5, X % X - %, xS—P(x X, - X)
WX 2 2
¢ P 0 f o
) 2
p 0 o) p2
L_a_é Z _Zp Z-ly-Zg P(Z-Zg-Lg)
oZ | o 2 o 2
- p. b b o
"L
- r
20 X ] x-szE—xS“1
X
E_‘i_:.]:.?'z.]:. Y_YE-YS
sy | P P
3 A 7 - 7. -1
: |2 ]
Y/ i E 8

The required observation matrix H for model three (range rate)
or model four (range and range rate) is obtained by assembling
the above partial derivatives in accordance with the expressions,

5 () 3 (o, p)
= or
& X X

The observation matrices for these models can be computed by the
program for any three tracking stations on a rotating Earth.

2. Onboard tracking - There are many types of onboard measure-
ments that can be made by an interplanetary space vehicle for navi-

gational purposes. Measurements such as Sun-planet angles, star-
planet angles, star occultation, star-elevation angles, apparent
planet diameter, and many others can be made by optical instru-

ments. Battin discusses various on-board measurements in refer-
ence 9. ‘

(65)

(66)



STEAP allows consideration of two types of onboard measure-
ments, star-planet angles based on three reference stars, and
apparent planet diameter., Star-planet angles can give an estimate
of the vehicle's position by measuring the angle subtended at the
spacecraft between the line of sight to a star and the line of sight
to a near body (usually the target planet). The star's distance
is assumed to be infinite so that its direction is independent of
the point of observation. The second type of onboard measurement,
apparent planet diameter, is useful in establishing position rela-
tive to the planet when the spacecraft is very close to the target.

The observation matrix H for star—-planet angles and
apparent planet diameter is determined by the same techniques as
used in the range and range rate derivations. Equations are
written in terms of the heliocentric position of the spacecraft
and target planet and the appropriate partial derivatives are
taken, The H matrix is given by,

(%2 %20 %3 B)

X

Hk =

(67)

where G5 Oy, Og are the three star-planet angles and B8 1is

the apparent planet diameter. The observation matrix has dimen-

sion 3 x 6 for star-planet angle measurements and 1 x 6 for apparent
planet diameter.

In determining the equations for the three star-planet
angles consider the following vector diagram,

Vehicle
’ st
X

‘Target planet

>y

P4

Sun

e N )
where X 4is the heliocentric ecliptic vector to spacecraft and

iﬁ is the heliocentric ecliptic vector to target planet, The
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position vector of the spacecraft with respect to-the target planet
is then,

] B 9
X XP - X
Y |= YP - Y (68)
2] L%
.+
Let W be a unit vector in the X direction where
w=21+X154+%¢
0 P p
and (69)
_\1/2
o] =(X2+Y2+Zz)
It is assumed that the direction cosines of the three reference
stars are known and given by,
Star No. 1 = (ul, Vys wl)
Star No. 2 = (uz, Vs wz) (70)
Star No. 3 = (u3, Vas w3)
where the direction cosines are referenced to the heliocentric
ecliptic frame. 1If o designates the star planet angles and
the subscript n is the star number, the cosine of the angle
measured is given by,
cos a_ ==—ju X+v_ Y+w Z]
p n n n
or (71)



Taking derivatives of the star planet angles with respect to the
state gives

o — A

do u X cos o

n _ 1 i n
3% sin o Lp p2
9 v Y cos a

no_ 1 _n
oY sin an Lp p2
aan 1 -Wn 7 cos an
— 7 sin o E-.- T2 (72)
°Z n | o) ]

sin a_ = [? - cos2 o ]1/2
n n

The required observation matrix Hk is obtained by insertion of

the partial derivatives in equation (72) into the expression

[ I
Bal aal Bul | ]
X oY oz :
30. 94, 240 1
0 - 2 2 Ty, (73)
)4 Y 9Z |
|
BaB aa3 8a3 :
| 3X  8Y 3Z |- |

To complete the derivation of onboard measurement types
used in the program, the following paragraphs develop the necessary
equations for apparent planet diameter. As mentioned previously,
the apparent diameter 1s practical when the target planet is close
enough for the measurement to be significant. Consider the fol-
lowing vector sketch,

63



For this figure, i is the heliocentric ecliptic position of the

spacecraft, XP is the heliocentric ecliptic coordinates of the

target planet and o is the radius of the target planet. The
..}

vector X 1is the position of the spacecraft with respect to the
target planet and is computed as,

X = XP - X
Y = YP - Y (74)
Z = ZP - Z

The slant range of the vehicle is given by

0 =(x + P2 4 Z2)M2

(75)
The apparent angular diameter B 1is found from
Y r
B P P
i —_— e = 76
R (%2 + T2 4+ 72)M/2 e

Taking the first variation as before results in

3B BB

65=36 X + 22 gy + 22 2

A



The corresponding partial derivatives are,

§§_= 2 rP X
oo a2 2l
o} o] P
3§-= 2 rP Y
o [ 2 2}1/2
% |0 - 1,
7)
§§-= 2 rP Z
92 5[ 2 . 212
P P
—a-—%-:a—-e.-:a—%-:o
aX aY oz

The resulting observation matrix, which has dimension 1 x 6, is
given by the expression,

- |3B 28 3B
B = [ax oy 32 00 OJ
where the partial derivatives are as shown in equation (77).

3. Measureflient schedules.- The measurement schedules that are
permitted by the error analysis mode of STEAP are completely ar-
bitrary. Up to 500 measurements can be used for any specific run.
The program contains a subroutine called SCHED that takes the set
of input data and orders the measurements consecutively for pro-
cessing. The input to the program, which is explained in the
User's Manual (Volume 1), is a set of variables that determines
how many measurements will be used, what kind of measurements
will be assumed by the process, and the frequency of each type
of measurement. '
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E. Midcourse Guidance Equations

This section is concerned with the computations made in the
error analysis mode of STEAP that pertain to midcourse corrections
made along an interplanetary trajectory. Previous sections have
explained the analytic details associated with the basic cycle
of the error analysis mode. The most complex computational event
in the program is the guidance event., Accurate representations
of guidance corrections and their influence on the overall error
analysis are vital if the uncertainties resulting from using the
error analysis mode are to be realistic.

Recall that the error analysis mode is essentially involved
with propagating state vector uncertainties along some reference
interplanetary orbit. The two quantities used for this purpose
are the mominal state vector itself and the associated covariance
matrix of navigation uncertainties., At time of a guidance cor-
rection in the error analysis mode, and because no estimation is
actually performed, the nominal or reference trajectory is un-

‘changed. Thus, the fundamental computation at a guidance event

is the determination of the uncertainties in performing the maneu-
ver; these uncertainties, which are a function of a number of quan-
tities, are then added to the previous navigation covariance ma-
trix for new processing in the tracking algorithm,

The computation of the maneuver uncertainty covariance matrix,

called @ in the analysis to follow, is clearly dependent on the
choice of guidance law or policy that is used for the corrections
as well as the specific reference trajectory. The options avail-
able for the guidance policy will be explained in a subsequent

section. Another factor affecting the calculation of Q is the
modeling of the AV wvector at the time of the maneuver in the
absence of any actual state vector estimation., The statisties

of the process must be handled very carefully to produce realistic

values for AV. The third critical factor in determining Q is
the execution error model itself.

1. Guidance policies.~ The guidance policy assumed in the
error analysis mode is responsible for the generation of what is
known as the guidance matrix T. Assume that, for the purpose of
defining T, an actual flight were being flown and that at some
specified time for a midcourse maneuver, the orbit determination



procedure had produced the best estimate &X of the actual state
vector's deviation from some precomputed nominal that satisfied

a set of specified target conditions. Under the assumption that
the correction would be made using some kind of linear impulsive

guidance scheme, the commanded correction AV would be given by
the matrix equation

AV = T8X

The matrix T is called the guidance matrix and is a function
of the guidance policy being used.

Three kinds of guidance policies are modeled in the error
analysis mode of STEAP. Each guidance policy represents a differ~
ent way of correcting any deviations from the nominal trajectory
to meet some set of targeting conditions. It should be stressed
that for all three guidance policies, even though no estimation is
performed in the error analysis mode, the computation of T can
be made independent of the estimation algorithm. To determine T
for any set guidance policy, all that is needed are the state
transition matrices relating state vector uncertainties at the
time of correction to uncertainties in the target conditions. A
linearity assumption is clearly involved, hence the use of the
phase "linear impulsive guidance schemes."

The computational operation of the STEAP error analysis
mode involves, at the time of a guidance maneuver, checking an
input code to determine which of three policies is being used for
the correction. The three guidance policy options are fixed-time-

of-arrival (FTA), two-variable B-plane, and three-variable B-plane.

The policy being assumed at the specific guidance correction is
important only for the calculation of T} once I ~has been com~
puted, the rest of the calculations at a guidance event proceed
independent of the kind of policy chosen.

, If an FTA guidance policy has been specified, then the
T matrix is calculated that would, for arbitrary linear pertur-
bations about the reference trajectory at the maneuver time, re-
“sult in a AV which, if implemented perfectly, nulls position
deviations about the reference trajectory at the time of closest

approach to the target planet. Let GPC and 6Vc be estimates

of arbitrary position and velocity deviations from the nominal
trajectory at the correction time .- Let QCA c be the 6 x 6
B 2

state transition matrix relating state vector uncertainties at

(78)
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the time tCA of closest approach to the target plamet along the

nominal trajectory to state vector uncertainties at the time tc

of the guidance maneuver. If QCA is partitioned into four
3 x 3 matrices, then position and velocity errors at the target

are given by

.
6PCA 5Pc oy i @2 SPC
-0 I S (79)
CA,c i ! :
GVCA svc ®3 ! ®4 SVC

The desired correction vector AV 1is the one that nulls the posi-
tion deviation at the time of closest approach. Specifically,

{
o | e, i | e
=3 R I (80)
avo, | Loy 1 o, [V, + avi,
|

which can be solved for AV to produce

- gL P - &V
AV = =0," &, 6P = &V (81)

and thus the guidance matrix T satisfying equation (78) is given
in partitioned form as, '

-1 i
T = [}@2 ¢l i - ].

Note that T is a 3 x 6 matrix that has been separated into two
square 3 'x 3 matrices. Also, from the above derivation, T
itself is independent of the actual state vector estimate at the
time of the guidance correction.

‘The calculation of I within STEAP, for the FTA guidance
policy, is relatively straight forward. The state transition ma-
trix @CA c is computed as usual, by analytic or numerical means,

s

and then properly partitioned and inserted to produce T.



For the three-variable B-plane guidance policy, the cor-
rection AV is designed to null errors in the quantities B°T,
B*R, and time of pilercing the sphere of influence. The B-plane

geometry is explained in an earlier chapter. Again let GPC and

6V¢ be estimates of arbitrary position and velocity derivations

at the correction time. If et o is defined as a 3 x 6 linear
>

variation matrix satisfying

'<SB-TSI1 .
&P
A . e
. - = 1
B Rs1| = Ms1,c e [’1 ! ”2] . (82)
6V
| Stgr |

based upcn the nominal trajectory, then the T matrix for the
three-variable B-plane guidance policy may be written simply as

I = [—n;l nli —I] (83)

where the derivation follows the one for the FTA policy.

The actual computation of I for the three-variable B-
plane policy is somewhat more complicated because the variation
matrix must be determined numerically. This is because there are
no good analytic formulas relating time at sphere of influence
variations to earlier state vector variations.

The final guidance policy option is the two-variable B~
plane policy. The implicit assumption in modeling I for this
policy is that midcourse corrections are made that null only the
deviations in B°T and B‘R at the time the vehicle pierces the
target planet sphere of influence. Errors in target time are
considered acceptable. For this guidance policy, only two target
conditions will be satisfied and there are three components of
the AV vector to be used for the midcourse maneuver. Thus, un-
like the two previous policies, there is no unique solution for
AV and consequently, for the determination of I, an additional
constraint must be defined. Let M be the 2 x 6 matrix, computed
in the program in a straightforward manner, linearly relating
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[ )

Perturba :ions about the nominal B*T and B°*R to perturbations
about th: nominal state vector of position and velocity at the
time of .phere of influence piercing,

[GB'T]
= M&X
6B°R| ST

Then if QSI c is the usual state transition matrix from the
2

time at 'he sphere of influence to the time of the guidance cor-

rection, the variational relationship that will ultimately define
I' is gi-en by

SB.T - ~ ~ -~
1o = M(psl’c GXC = msxC = Ach + stc (84)
‘ ST

where n now is a 2 x 6 variation matrix, and A and B are
2 x 3 partitions of n whose elements are obtainable from M
and ¢ .ccording to

6
A= (Am) where Ayu = % Moy fm -
p=1 '
6
B = (B%m> where Bgm = :z: Mgk Qk(m+3) 86y
k=1 '

2=1,2;m=1, 2, 3

From equation (84) it should be obvious that the two B-

- plane va:iations will be nulled by any midcourse correction vec-

tor AV that satisfies the vector equation,
ASP_ + B (asvc + AV) =0 (87)

where, as before, 6§c and 66# are estimates of arbitrary

liﬁear‘perturbations in the state vector‘position and velocity

at the correction time. Rewriting the equation, any midcourse
correction of the form S



% _'l ~ —l »
AV = —-BT (BBT) A&Pc - BT (BBT) BGVC +u . (88)

where Bu = 0, will meet the two-variable B-plane targeting re-
quirements. The value for u that minimizes the magnitude of
AV in equation (88) is u = 0, since Bu = 0 implies that u
18 orthogonal, in the vector sense, to the remainder of the ex-—
pression for AV. » '

In implementing the two-variable B-plane guidance policy
for the error analysis mode of STEAP, this minimum magnitude AV,
which corresponds to least fuel expenditure, is chosen. Thus the

3 x 6 guldance matrix T for the two-variable policy is calcu—-
lated, in partitioned form, as

r o= [—BT (BBT)—l A l ~5" (BBT)-I B:] (89)

2. Modeling AV without estimation.~ The choice of guidance
policy determines the way in which the I matrix is computed in
the error analysis mode of STEAP. Once [I' has been calculated,
the remainder of the guidance event algorithm is the same for all
three guidance policies.

For the error analysis mode, the primary output of the
guidance event algorithm is the execution error covariance matrix

Q that will be added to the navigation uncertainty. Since a

realistic Q 4s always a function of the comméanded midcourse cor—
> >

rection vector AV, some effective AV, based on the statistics

of the flight, must be computed before Q can be obtained. This
subsection of the report details the way in which the effective

.+
AV is calculated so that a realistic Q can be determined for
further covariance matrix propagation.

The error analysis mode is essentially a preflight tool.
Although it is known that guidance corrections, based on some
guidance policy, will be anplied at certain maneuver times accord-
ing to the .equationy

AV = r@f{ (90)
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in the absence of any estimated state vector 35X, all that ig
available for modeling AV at the correction times are the likely
statistics associated with the maneuver.

Since the injection covariance matrix assumed within the
program is based on uncertainties about a nominal injection that
will lead to specified target conditions, and since the orbit de~
termination process is performed with an unbiased estimation al-

gorithm, the a priori or preflight expected value for &X at the
correction time 1s zero. From the linearity of the expected value
operator, it follows that the a priori expected value for the mid-
course correction vector is alsoc zero, even though there is only
one injection, namely the nominal injection, that produces no mid-
course corrections —— and this only occurs if the preflight tra-
jectory computation had a perfect dynamic model.

Within the error analysis mode of STEAP, the ‘execution
error matrix Q 1is based upon a priori information related to

the most likely magnitude of AV, given by E[]AV[‘, and the
direction of the assumed or effective AV is then determined as
the most likely direction, given that some correction will be
made. The vector quantity "E[AV]" that appears in the follow-
ing equations should be treated, therefore, as the effective mid-
course correction vector used to determine realistic wvalues for

the execution error matrix Q in the absence of any estimation.

Define ”El}Vj]" as the effective midcourse correction

‘ . .th : . .
vector to be used at the time of the j correction for computing
’ +

the execution error matrix Qj' Let Pj—l be the covariance ma-

trix of orbit determination uncertainty —-- combining navigation and
. ‘ . . 8t . .

execution uncertainties after the  j-1 correction —— just after

the previous maneuver.  For j=1, P0 is the injection covariance

matrix. If Qj 5-1 is the state transition matrix relating lin-
S e

. : . ; .th
ear perturbations about the nominal at the times of the j and

. .8t . . . .
j-1 correction, then, assuming a "correct" guidance policy at
tj 1? the statistical deviations of the actual trajectory from

a reference trajectory that meets the specified targeting condi- -

. . . .th . .
tions are given, prior to the j correction, by the covariance
matrix



- + T

P, =20, , . P, 0, ., . +0Q, .
h| j,3-1 "j-1 "j,i-1 QJ,J—l

where Qj j-1 is the process noise matrix between corrections.
b4

Continuing the above reasoning, the a priori statistics on the
) >
midcourse correction vector AVj at the time of the jth correc-—

tion may be calculated as

s.=E|av, av, | =T, PT .t
i i3 37373

. . .th . .
where T, 1is the guidance matrix at the Jt correction. Since
"E[}Vj]”, is critically based on the covariance matrix Sj’ it

is worthwhile to examine its origin in detail.

Bzfore the flight, the injection is described in terms of
uncertainties about some nominal by the injection covariance P

Since an arbitrary linear perturbation about the nominal injection
is related to perturbations about the nominal state vector at the
first correction time through the state transition matrix @l 0°

3

the covariance matrix Pl’ where

- T

= +
Py =%.0% %,0% %0

represents the a priori likely dispersions. of the actual trajec-

tory from the nominal trajectory at the time of the first correc-
tion. {Since

no m%itex which value for SXl actually occurs, th

statistical description of the first midcourse cé ection vector
is that it has mean zero and covariance matrix Si, where

_ - T
Sl = Fl Pl Pl.

(91

(92)

(93)

(96)

(95)
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Based on the effective AV, the covariance matrix of

'havigaticn uncertainty P;, given by

+ - loto
P, =P 4 |~"F- (96)
1 1 o

Q

18 used to replace the injection covariance Po and thus the a

priori statistical description of the second midcourse correction
is contained in the covariance matrix Sz, where

_ + T T
8, =T, [@2,1 P @2’1 + Qz’l] . on

The general process continues, from correction to correction,

according to equations (91) and (92).

The covariance matrix Sj thus represents the set of all
values for AVj that would occur, with some assigned probabilitiesﬁ
if the actual flight were being flown. For example, if PO is

' the injection covariance matrix describing the statistics of in-

jection uncertainty, then S1 is the covariance matrix that de-

seribes all ensemble correction vectors AV1 resulting from in-
jection dispersions defined by Po'

Before any information about an actual flight is available;
the midcourse correction vector AVj at the jth correction is a

random variable, with mean zero and associated covariance matrix
§.. Define pj as the scalar variable given by

b
pjﬂE [‘Aqu (98)

In this equation bj represents the a priorl most likely magni-

tude of the jth‘midcourse correction and hence 1s very important
for fuel sizing., Hoffman and Young (ref. 12) have shown that a
good approximation for the quantity pj is given by



0. ;‘,zé-(}-+§%iﬁlgl)
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and A A

12 Ao A3 are the eigenvalues of the covariance matrix Sj‘

. . . .th
The statistical variance of the magnitude of the j
midcourse correction, also derived in approximate form in refer-
ence 12, is given by the equation,

Both these values are computed in the guidance event algorithm
of the error analysis mode.

From the point of view of the error analysis mode, the
most likely magnitude for the jth correction AVj is simply
0,. To complete the specification of the effective midcourse

correction vector "El}Vﬂ'", all that remains is to determine

its most likely direction.

Let Xl, Az, and k3 be the eigenvalues of the covari-

. . . ; .th .
ance matrix. Sj associated, a priori, with the j midcourse
maneuver. Define Ayr Gy and oq as the eigenvectors related

to the three eigenvalues. It can be shown that, under the assump-
tion that some correction takes place, the most likely direction
for the midcourse maneuver, defined probabilistically, is the
direction of the eigenvector associated with the maximum eigen-

.-).
value of Sj' Define o as this eigenvector associated with the
maximum eigenvalue., The effective midcourse correction vector

h .
associated with the jt correction is then given by

(99)

(100)

(101)
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This vector has magnitude pj, the most likely magnitude for
AVj based upoh the a priori statistics, and is in the direction
of the maximum probability correction under the assumption that
some correction is made.

It should be stressed that the computation of the effec-~
tive midcourse correction vector '"E AVj ", within the error

analysis mode, is only an artifice to pérmit a realistic, a priori
computation of the execution error matrix Qj' The nominal tra-

jectory returned to the basic cycle is not affected by the compu-
tation. However, the calculated information concerning likely

magnitudes and directions for the maneuvers is critical for fuel
sizing studies.

3. Execution error modeling.- This subsection of the report
treats the analytical way in which STEAP computes the execution

error matrix Qj associated with a specified midcourse correction
vector AVj. In the error analysis mode, the input to this por-

tion of the guidance event algorithm is the effective midcourse
correction vector "E[?Vﬂ " defined in the preceding subsection.

The problem may be stated simply: given a midcourse correction
vector AV, determine an associated covariance matrix of execu-

tion errors from some physical model identifying relevant error
sources.

Within the STEAP guidance event algorithm, four indepen-
dent error sources are modeled to be used in the determination

of the execution error matrix Q. The first error source is
called the proportionality error and is in the direction of the
midcourse correction vector AV with magnitude determined by
the proportionality factor k. A second error source, in the
direction of AV but independent of its magnitude, is the reso-
lution error s that corresponds to a thrust tailoff error from
the midcourse engines. Two pointing errors defined in terms of

angles &0 and 6B complete the error model for the midcourse
maneuver.



Let 6AV be the error vector at the time of the midcourse
maneuver. From the above description, a general vector equation
for the maneuver error is given by

AV

SAV = kAV + s W + SAV (102)

pointing

where J§AV pointing will be described later. The execution error

covariance matrix Q that is needed at the time of the midcourse
correction is simply

Q=E [MV@AVT] (103)

Assume now that J§AV pointing results from two angular
pointing errors, 8o and &B. For purposes of unique specifica-—~
tion, assume that dJa 1is a pointing error angle measured in a
plane parallel to the ecliptic plane and along a vector orthogonal

to the midcourse correction vector AV, If GAVl is the velocity

~

error due to the angular pointing error 8o and i, j, k form
the unit triad in the heliocentric ecliptic system, then, for
small angles d&o,

oo AV, : AV, 5
1 2 2\1/2 2 2\1/2
(AVX + AVY) (VX + VY)

SAV (104)

where AVX and AVY are the X and Y components in the helio-

centric ecliptic system of the midcourse correction vector AV
and p 1is the magnitude of AV. Note that the velocity error
GAVl resulting from &a has components only in a plane parallel

to the ecliptic.

The second pointing angle 68 defines a velocity error

GAV2 that is orthogonal to both GAVl and the midcourse correc-

tion vector AV. Again for small angles &8, the velocity error
resulting from this pointing error, referenced to the heliocentric
ecliptic system, is given by

AVX AVZ 88 A AVY AVZ SB 2)1/2 -

84V, = ( 5 2)1/2 i +(A 5 2)1/2 j - 6B(AVX + vy k  (105)

N

AVX + AVY VX + AVY
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From these equations it is clear that the vector set AV, GAVl

and GAV2 satisfies the mutual orthogonality imposed by the

model. The complete description of the execution error vector
6AV may then be written in heliocentric ecliptic coordinates as

B oAV_80 + AV_AV, €] ..
s Y X Z
= + 8)Av. +
SAV _(k p) . ~ ik
AV AV, 88 = oAV, Su : (106)

u

+(k+-s—)AV+ I 2z
N e/ X

+ (k + -S—>L\.V - uess]k

where AVX, AV and AVZ are the heliocentric ecliptic coor-

Y’

“ ~

dinates of the midcourse correction; i, Jj, k are unit vectors
in the X, Y, and Z directions; p 1s the magnitude of AVj
k, s, 68a, &8 are the four independent error sources to be
treated as random variables; and u is an intermediate variable
defined by

( 2 2\1/2 |
u = AVX + AVY) (107)
From the above expression for ¢6AV, the execution error covari-

ance matrix Q can be computed, in terms of its elements, as

- 2 |2 o AV%QZGZ AV)Z(Avéc
Q,, = avs o + -2+ So. 4
11 x %

2 2 2 22
9 _0_§ _ (*] AVXAVYOGu . AVXAVYAVZGB g
u ‘uz

Qg = Qy = VghVy {’k g
&2

- S 2, sl _ 2

Q3 = Qq = AV lV; foy + 5|~ AVRAV, 0,

2 2,.2
6 . sz 02 . gi . Avxp c&! . AVYAVZG 8
22 Y |k pZ 2 2 2

u g + &v2 (108)

2

Red
g = 2 s 2
Qg3 = Qg = AV,AV, ‘:"k + 0"2‘] - AVAV, T

2

a
~ - 2 2,8 22
Q33 = AV l}k * 2]"' U s



The computation of the execution error covariance matrix
is dependent upon the assumed perfect midcourse AV with compo-
‘nents AVX, AVY, AVZ, and the variances (zero means are assumed)

of the four independent error sources. In the above equations, it

is assumed that the errors have no cross-—-correlations and that

2 2 2 2 . . .
Or Tg» Tgus and 066 are the variances of the proportionality,

resolution, and two pointing errors respectively.

Recall that, in the error analysis mode, no actual state
vector estimation is performed, and hence no specific midcourse

corrections are ever calculated. The components AVX, AVY, AVZ

used in the above expression for computation of Q come from the
effective midcourse correction vector "E[AV]" discussed earlier.

4., Additional computations.- Some additional quantities of
mission analysis importance are also calculated in the guidance
event algorithm of the error analysis mode of STEAP. It has al-
ready been pointed out that fuel sizing information results from
‘the computation of the most likely direction and magnitude for
the midcourse maneuver AV, The propagation of navigation un-
certainties by the basic cycle results in orbit determination
accuracies in the neighborhood of the target planet. The third
key piece of mission analysis data, which tells how well a de-
fined navigation and guidance process will meet specified target
conditions, is provided at a guidance event.

Before any midcourse corrections, the statistical devia-
tions at the target about the nominal or reference target condi-
tions may be found by propagating the injection covariance all the
way to the target. Let o be a 3 x 6 variation matrix relating

linear perturbations in three targeting conditions to linear in-
jection perturbations. Then, if Po is the injection covariance,

the statistical description of target condition deviations about

the nominal due to injection errors is given by the matrix

+
W , where
o

+
W = g Po n (109)
In the absence of dynamic noise, the matrix w: repre-

sents statistically how far the ensemble package of injections de-
fined by PO would miss the specified target conditions. Tracking
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information taken after the injection can lower the inaccuracies
in the answer to the question "where is the spacecraft?" However,
it is only at guidance corrections (again in the absence of un-
modeled accelerations) in the error analysis mode that there is
any change in the probabilistic dispersions about the desired
target conditions.

At each guidance correction in the error analysis mode,
two covariance matrices are computed that are related to likely

target condition dispersions about the nominal. For the jth
midcourse correction, the matrix W; represents target condition

dispersions about the nominal if no correction were to take place
at that time. It is called the covariance matrix of uncertainties

.in the target conditions before the correction. Similarly, once

the correction has been modeled and an execution error covariance
~ +
Qj obtained, another matrix Wj is computed that represents tar-

get condition dispersions after the correction. ' Both these mat-
rices would play a critical role in any midcourse optimization
scheme designed to choose the times for the corrections.

Within the program, W, is computed as

3

- + .7 T
W, =n, |e, ., P _ & +Q, . :
i3 [j,J—l §=1 "3,3-1 Qj,J—l] "3

where nj is the linear variation matrix relating target condi-
tion deviations to perturbations in the state vector at the time

of the jth correction, P;—l is the navigation uncertainty

covariance after the j—lSt correction that contains the execution
; - s

error covariance Qj—l from the j-1 t correction, and the other

two quantities are the usual state transition matrix-and process

. ; R + P s
noigse matrix. The covariance matrix W,, defining uncertain:ies

3

in the target conditions aftér the jth midcourse maneuver, is
given by

(110)

(111)



where P; is the orbit determination uncertainty covariance
matrix just prior to the correction and Qj is the execution

.th .
error covariance matrix for the j correction.

It is illustrative to demonstrate how the successive com-
putation of the W matrices is helpful from a mission analysis
point of view. Assume first that the process noise matrix Q 1is

always so insignificant that it can be neglected. The matrix w:

glven in equation (109) represents the propagation of ensemble
injection errors into target condition deviations. In the ab-

sence of dynamic noise, W. is given by

1

- T T+

W= % 0% %, M =Y (112)
since ny Ql,O = N, (113)

As would be expected, there have been no guidance corrections to
bring the trajectory back to the specified target conditions and
thus the target condition uncertainties are unchanged.

An effective midcourse maneuver 'TIFNl]" is next calcu-

lated and 1its associated execution error matrix Ql is determined.

The covariance matrix Pl is the navigation uncertainty before

the maneuver. Then
W= (B E—: Ny (114)

Under the implicit assumption that if the spacecraft trajectory

uses perfectly known PI = 0) and the execution error were

small (Ql = O), then the guidance policy would result in a cor-
rected trajectory satisfying the desired target conditions.
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- +
Continuing to the second correction, W2 = wl in the

absence of dynamic noise and then

(o]

T ‘
N, (115)

g

+

]
-——=-
L1 O

)

tells the analyst how much the second correction is likely to re-
duce the target condition dispersions. ‘

In a later portion of this report, test runs with the error
analysis mode are presented. Most of the data discussed are con-
cerned with the likely magnitudes of the corrections, orbit de-
termination uncertainties along the trajectory, and the matrices

W; and W; which define probabilistically the efficacy of the

navigation and guidance process.

It should be mentioned here that STEAP has an additional
option available to the error analysis mode for computing the

execution error matrix Q. without using the effective midcourse
velocity vector "E|AV,|'". Under the same formulation for &AV
given by equation (106), if the components AVX, AVY and AVZ
are also treated (as they are, in reality) as random variables in

determining Qj an approximate solution for Qj can be obtained

by using the matrix S describing the statistics of the correc-

3

tion vector. AVj. The validity of the result is difficult to de~

termine physically, however, and the mathematics are sufficiently

nonrigorous to preclude judgement on the accuridcy of the resulting
approximation.

F, Eigenvector and Prediction Events

The twa other computational events in the error analysis mode
are eigenvector and prediction events., At an eigenvector event,
the covariance matrix of orbit determination uncertainty is operated
on to produce geometric information about the size and oriéntation
of the navigation uncertainties. At a prediction event, the navi-
gation uncertainties are propagated forward, assuming no additional
measurements, to determine uncertainties at critical trajectory
epochs,



The computations at an eigenvector event are straightforward.
Define tk as the time of the last processed measurement before

— + .
the eigenvector event and let Xk and Pk be, respectively, the

nominal trajectory and the orbit determination uncertainty co-
variance matrix after processing the measurement at 'tk' If te
is the time of the eigenvector event, then i; the nominal state
vector at te’ is computed from the virtual mass trajectory sub-
routine. The navigation uncertainty covariance matrix at te

defined by Pe is given by

+ T
Pe - Qe,k Pk Qe,k + Qe,k

where @e K is the state transition matrix between tk and t
>

and Qe K is the process noise matrix, At an eigenvector event,
I’
the quantities i; and Pe are first computed and then stored
for use by the basic cycle of the error analysis mode after the
eigenvector calculations are finished.
In its general form, considering all possible augmented state
vector options, Pe is a square matrix whose dimension is given

by the dimension of the augmented state vector. The first six
components of the state vector are always position and wvelocity,
and hence the upper left 6 x 6 of Pe is the covariance matrix

of uncertainties associated with position and velocity. Define

by Pe the 3 x 3 partition of Pe containing information about

the positional navigation uncertainties; define by Pe the 3 x 3

partiticn.of Pe related to velocity navigation uncertainties.

At an eigenvector event, both Pe and Pe are diagonalized

in a standard way to produce the position and velocity eigenvalues
and the associated eigenvectors. In addition, the 36 hyperellip-
soids of uncertainty, in both the position and the velocity space,
are computed to show the size and geometric orientation of the

navigation uncertainties. These ellipsoids are then projected onto

(116)
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each of the two—diﬁensional planes to show additional geometric

information. All these calculations are straightforward and will
be discussed only briefly in a general form.

Let P be a 3 x 3 covariance matrix associated with a zero
mean, three dimensional vector random variable X. If Al’ 12,

and A3 are the eigenvalues of P and Gys O, and a, are the

associated eigenvectors, then the physical meaning of statistical
deviations about the mean can best be viewed in terms of an ellip-
soid in the three-dimensional space whose principal axes are in
the direction of the three eigenvectors and have length equal to
the magnitude of the eigenvalues. The 3¢ ellipsoids computed
from P result in a geometrical surface of points of equal prob-
ability whose interior contains over 957 of the probabilistic
events. The principal axis associated with the minimum eigen—
value defines the direction of minimum uncertainty; the axis

associated with the maximum eigenvalue defines the direction of
maximum uncertainty.

At a prediction event, the nominal trajectory ié and asso-
ciated navigation uncertainty covariance matrix Pe are first

calculated just as at an eigenvector event. Now define t_ as

a time to which the prediction is being made. For example, sup~
pose that orbit determination uncertainties are desired at launch
plus five days as a result of tracking for four days after launch.
Then te is launch plus four days and tp is launch plus five

days. A typical use of the prediction event information might be
for loading a guidance command maneuver. If a correction were to
be made at launch plus five days and were to be loaded at launch
plus four days, then the key covariance matrix of navigation un-
certainty would be the predicted covariance at five days, given
only the results of tracking up to four days.

Assume that the prediction event occurs at te and that the
prediction time is tp. Then the navigation uncertainty covari-

ance matrix at tp, given the measurements taken before te’ is

simply

o P +
P p,e & Pp,e Pse

(117)



where, as before, @p o and Qp o are the usual state transition
b ?

matrix and process noise matrix respectively. Within the predie-
tion event algorithm of the error analysis mode, the resulting
covariance matrix Pp at the prediction time is also diagonalized

to produce eigenvector, elgenvalue, and hyperellipsoid information.
Thus, by superimposing this geometrical information about Pp for

different prediction event times te, one can observe the effect

of additional tracking on predicted navigation uncertainties.

Within the error analysis mode of STEAP, if the prediction
time tp is close to the time tSI that the nominal trajectory

pierces the sphere of influence of the target planet, then addi-

tional computations are made. Suppose tp = tSI and that the

2 x 6 matrix M, defined earlier, relates linear perturbations
about the nominal B-plane parameters B*T and B-R to linear

perturbations about the nominal state vector at the time tSI'
In this gituation the program also computes predicted navigation
uncertainties in terms of the B-plane parameters by calculating

~

P, a 2 x 2 matrix, where

P=MP_ ML (118)

and then diagonalizes P to show its orientation in the impact
parameter or B-plane.

One additional computation of note takes place at both an
elgenvector and a prediction event. Before eigenvalue informa- .
tion is determined, the entire correlation coefficient matrix

-~

R, whose elements are given by

- P,

P P, .
i,i 73,3

13 (119)

is computed. This matrix is also square, has dimensionality equal
to the dimension of the state vector, and yields the correlation
coefficients between various element uncertainties in the state

vector. When any off-diagonal element of R becomes close to
unity in magnitude, the underlying system becomes less and less
observable. A condition coefficient of unit magnitude relating
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- estimate of this augmented state at t

any two components indicates that the estimation algorithm cannot
uniquely determine those two elements separately. The concepts
of observability and partial observability will be discussed in

greater detail in the analytical presentation of the simulation
mode .

G. State Vector Augmentation

Both the error analysis and simulation modes of STEAP permit
the use of augmented state vectors. In reference 10 a detailed
derivation of the required recursive estimation equations is
given when all the augmented parameters are constants. The basic
Kalman filtering algorithm remains unchanged, although the inclu-
sion of more elements in the state vector does increase the di-~
mensionality of the problem.

To illustrate the handling of augmented states within both
the error analysis and simulation modes of STEAP, consider an aug-
mented state vector §Z, assumed to be linear perturbations, that
can be partitioned as

where 68X 1is a 6 x 1 vector of position and velocity deviations
(the nonaugmented state), éPl, is a n1 x 1 vector of pertur-
bations in parameters that appear in the dynamic equations, and
6P2 is a n, X 1 vector of perturbations in constants that

appear only in the measurement equations. If GZk is the best

+

K® Pk is the 4
(6 + n; + n2> X (6 + n; + nz) processed covariance matrix of
orbit determination uncertainty at ¢t,, and AYR+1 is the mea-

(120)

sured deviation of an observation made at t from some nominal

k+1
measurement based upon the nominal trajectory, then the full,
augmented recursive algorithm for both the error analysis and
simulation modes is given by
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where wk+1 Kk is the state transition matrix of dimension

H
(6 + ny + nz) X (6 + ny + n2>; Ak+1,k is a square process noise
matrix of augmented dimensions; Mk+l

of dimension r x (6 + ny + n2) where r 1is the dimensionality

of the measurement; Rk+1 is the same measurement noise matrix

as before; and Kk+l’ the Kalman gain matrix, now has dimension

is the observation matrix

(6 + oy + nz) x r. Under the reasonable assumption that there is

no dynamic or process noise corrupting the augmented parameters,
then ; may be partitioned as
herr, e ™Y ’

!
I
M = |77 -~ (122)
i .
i
1

the only new or additional computations required for the augmented
state, other than changes in matrix dimensionality, are in the
calculation of the observation matrix Mk+l and - the state transi-

tion matrix wk+l,k'

Recall that the observation matrix Mk+l relates linear per-
turbations about the nominal measurement at tk+l to linear per-
turbations in the state vector at the same time. Let 6yk+l be
a measurement perturbation of dimensionality r x 1 at the time
tk+1' Then, in partitioned form, the measurement equation may be

written
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== = i
Va1 = M S [Hk-i—l 0 Bk+1] 88y (123)
] ]

where Hk+l is just the r x 6 observation matrix for the non-

augmented state, 0 is a r x n, matrix of zeros since the dynamic

augmented parameters are not related to the measurements expli-
citly, and Bk+l isa rx n, matrix defining changes in the

observation due to changes in the augmented parameters that appear
in the measurement equations.

Similarly, if the defining equations for the state transition

matrix Wk+l,k are wriltten in partitioned form as
~ 1 ¥ | I - W
X4l otk b ek ! 0] 8%y
———
= = = 1 1
GPl ézk+l wk+1,k 6Zk 0 | I | 0 6Pl (124)
_____ ;“‘—‘*"r—
1
LGPZ L 0 : 0 | I_ SPZ
o . . 4

the matrix ¢k+l k is recognized as the nonaugmented, standard
3’

6 x 6 state transition matrix. Since the augmented parameters

are all constants, identity matrices of dimensionality n, .and

n, appear in the partitioned expression for Wk+1 K* Further—
]

more, since perturbations GPZ in the measurement equation para-

meters do not affect anything else in the state vector between

measurements, and errors in position and welocity have no influ-

ence on perturbations in the augmented dynamic constants, the

only additional computations required for the augmented state

transition matrix involve the determination of the 6 x nl matrix

ek+l K’ This matrix describes the linear perturbations in posi-
]

tion and velocity, over the given time interval, due to pertur—
bations in the dynamic constants.



Essentially then, other than changing the dimensionality of
the matrices involved, the only additional calculations required,
for either estimation or error propagation with an augmented state,

are those used for the determination of the matrices Bk+l and

ek+1,k defined above.,

1. Options.- Ten augmented state vector options are currently
available in STEAP for both the error analysis and simulation
modes. An input code value, IAUG, specifies the state vector to
be used in the computations. Spacecraft position and velocity are
always included in the state vector. The following table summarizes
the augmented state vector optioms. '

Augmented Dimension

X TAUG Parameters of state Description
1
) 1 |[None 6 Standard spacecraft posi-
tion and veloclty
2 de, del, d¢1 9 Includes geocentric radius,
latitude, and longitude
biases for first station
location
3 |an., dut 8 Gravitational biases for
s P sun and target planet
4 le, dﬁl, dal 12 Meagsurement biases - range
and range-rate from first
duz, duz, ds station, three star-planet
angles, apparent diameter
5 |da_, de_, di 9 | Target planet ephemeris
. P P bilases in conlc section
elements
6 de, del, d¢l 15 Geometric radius, latitude
and longitude bilases from
dRz, dez, d@z all three station locations
Ry, 493, ¢,
7 de, dél, d¢1 1 Combination of IAUG = 2
and IAUG = 3
dugs dutp
8 de, del, d¢1 15 Combination of IAUG = 2 and
A 1AUG = &
le, le dul
daz, dm3, 48
9 dus, duc , da 11 Includes all dynamic con—
2 P stant biases
dep, di
10 | @, @by, day 15 Combination of IAUG = &
and IAUG = 5
du.z, dua, dg
d. de , di
fp? S T
11 de, del, d¢l, du_, 17 Combination of IAUG = 2
. 8 IAUG = 3, and IAUG = 4
dutp, le, le, day
duz, dus, 4as
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From the preceding table it is clear that the maximum
dimensionality of the propagated covariance matrix in the error
analysis mode is 17 x 17. Notice that target planet ephemeris
uncertainties are treated as biases in the conic section elements
a, e, 1. This is in keeping with the ephemeris routine used by
the n-body trajectory scheme that computes the position and velo-
.city of the planets from mean conic section orbital elements.

2. Observation matrices.— A full description of the augmented
observation matrix Mk+l given in equation (123) requires only

the additional computation of the matrix relating linear

‘ Bl
perturbations about the nominal measurements to linear pertur-
bations about the nominal values for the augmented parameters
appearing in the measurement equations. A total of 15 possible
parameters, including nine station location biases and six measure-
ment biases, may be treated under one of the augmented state op-
tions as augmented measurement parameters. Each of these biases

is treated by the program as mean zero Gaussian random variables
with specified variances.

Assume first that augmented state option TAUG = 4, whose
state vector has 12 dimensions, is being run. Partitioning the
measurement equation,

X
= - '

Y41 = Mey1 %qn [?k+1 ! Bk+£] Sy
{

S8

by ol

where 6Xk+1 is a 6 x 1 vector of perturbations in position and

velocity, it 1s easy to see that the determination of the matrix

Bk+1 is dependent only on the measurement type being taken. If

the particular measurement being made is range and range-rate,
then the range and range-rate biases are simply additive to pro-
duce

(125)



100000
By =
010000

Similarly, if the measurements being processed are star-planet

angles, then the remainder of the observation matrix Mk+l is
given by
001000
Bk+l =1000100
000010

The Hk+1 partition of Mk+1 is always computed in the same

way as it was for the nonaugmented state.

Handling the station location biases is more difficult

computationally. The only measurements affected by these biases
are the measurements of range-rate and range. Assume, for illus-

tration, that IAUG = 6 and that at the time tk+1 a measure-

ment of range and range-rate from station 2 is taken. The par-
titioned form of the measurement equation is now given by

-5X1< v i

6Rys 86, 64y
SR
o] 2
56,

6¢2

k+1

!
5"
+
et

O
?T‘N
+
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]

=l
-+
=t
o
o)

L6R3, 864, 80,

The partitioned zeros of Mk+l are of dimension 2 x 3 and occur

because biases in station locations 1 and 3 do not affect a range
and range-rate measurement made from station 2. Since Hk+l is

already known from standard, nonaugmented procedures, all that

(126)
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remains to complete the calculation of Mk+l is the specification
of the 2 x 3 partitioned matrix Bk+1 that relates linear pertur-
bations in the range and range-rate measurements to linear per-

turbations in the station 2 geocentric coordinates.

Recall from Seetion D of this chapter that the range and
range~rate measurements are functions of the geocentric station
location coordinates. Mathematically, '

D, =% (X’ Ros 855 995 tk+1>

. (127)
b= % (X’ Ryr 8p0 40 tk+l>
Expanding in Taylor series about the nominal values, the matrix
B can be written as
k+1
BDZ 8D2 8D2
B = 18R, 996 ¢
+ 2
kel 2 (128)

(2X3) . . .

Eﬁg' 552' 552' evaluated along the
|2 2 2 | nominal at tt1

The analytic partial derivatives defining Bk+1 may be easily

computed from the equations given in Section D.

For any of the possible augmented state vector options,

the matrix Bk+l is computed according to the above procedures,

depending on which measurement parameters are included in the
augmented state., The STEAP error analysis and simulation modes
then put together the proper observation matrix Mk+l from
Hk+1’ Bk+l’ and the particular augmented state vector being

used.

3. State transition matrices.—- To compute the state transition
matrix Wk+l Kk for the augmented state vector, it is clear from
k4

equation (124) that the only additional calculations involved are
associated with the generation of the submatrix 6k+1 K" This
E



submatrix relates linear perturbations in position and velocity

at the time tk+l to linear perturbations in the dynamic constants

that affect the trajectory over the time interval At = tk+l - tk.

Within the error analysis and simulation modes of STEAP,
five dynamic parameters may be added to the state vector. These
five are the gravitational constants of the sun and target planet,
Hg and utp’ and three target planet ephemeris.biases, ap,

ep, and ip. _Assume, again for illustration, that IAUG = 9,
Then the partitioned equation for the state transition matrix
wk+1,k is g;ven by

-
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where ®k+l K is the 6 x 6 state transition matrix for the non-
9

augmented state and 6k+1 k is the 6 x 5 submatrix whose computa-

1

tion completes the specification of the entire state tramsition

matrix wk+l,k'

To explain the genesis of '6k+l Kk recall that the solu-
b
tion Xk+l to the spacecraft equations of motion at the time
tk+1 can be written, in symbolic form, as

vxk+1 =1 (Xk’ E, t)

Let i# be the nominal position and velocity at t, and let P

represent the nominal values for the dynamic parameters. If

(129)

(130)
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i£+l is the nominal solution to the equations of motion; that is,

Bn = £ (T . 1) )

then linear variations around that nominal, allowing for pertur-

bations in both ik . and ?; may be written as

6% ., =% | ex, +2& | s (132)
' axk evaluated along oF evaluated along
the nominal the nominal

The quantity -3% in the above expression may be reéognized as
3P

the state transition submatrix 6k+1,k'

Within STEAP, the matrices ek+l k are always computed
s
by numerical differencing. To illustrate the calculation of one
column of ek+1,k’ let Xk+1 and Xk be nominal positions and
velocities at tk+l and tk respectively. These nominal values

result from the assumption that the gravitational constant of
the Sun is given by L Now set Mg = Hg + Aus and perform the

n-body trajectory computation over the interval [tk’ tk+i]' A
new value for the spacecraft position and velocity, call it
£k+l’ results. Define the vector AX = ik+l —‘§£+1. Divide each
component of AX by the perturbation magnitude Aus and the re~-
sultant vector forms the column of ek+1,k that associates lin-~
ear perturbations in position and velocity with linear perturba-
tions in the gravitational constant for the Sun.

Vhen IAUG = 9, five separate integrations must be used
to build up the five columns of - ek+1,k' Fach of the five dyna-~

mic constant biases 1is varied separately and the trajectory is
computed again. These numerical quantities should be good approxi-

mations to the analytic partials defined by equation (132).



The computation of the state transition and observation
matrices for augmented states is, as has been shown, relatively
straight forward. However, storing these calculated values in
proper arrays, depending on the augmented state option is a com-
plex bookkeeping problem. It is hoped that a future version of
STEAP will permit arbitrary augmentation (specification of any

combination of additional parameters) with many more possible
augmented parameters.
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VI, SIMULATION MODE - ANALYSIS

There is an essential difference between the philosophies
governing the error analysis and simulation modes of STEAP. The
error analysis mode is primarily a preflight mission analysis tool
that gives information related to uncertainties about some speci-
fied nominal trajectory. By contrast, the simulation mode 1s de-~
signed for a detailed analysis of the orbit determination proce-
dure and its efficacy in the presence of a host of possible anom-
alies, The error analysis mode might be used to determine the

nominal trajectory design for a specific missionj the simulation

mode then "flies" the mission, within the computer, and can pro-
vide invaluable information for mission operatioms.

The computational structure of the simulation mode is similar
to that of the error analysis mode. There is a basic cyzle in
which subsequent measurements are processed consecutively and
there are events where calculations not specifically related to
the measurement-processing cycle are made. The first section of
this chapter outlines in detail the equations and logic used with-
in the basic cycle of the simulation mode. The second section
treats the most complex event, namely the guidance event where
midcourse corrections are simulated. In the third section the
other events are presented, including the quasilinear filtering
event that is included for its possible divergence prevention
abilities, The fourth section includes a discussion of the prob-
lems of divergence and nonobservability that can plague an orbit
determination procedure.

The computations themselves, within the simulation mode, are
not any more difficult than in the error analysis mode. There
are, however, many more of them and in the discussion to follow
some of the most important features of the simulation mode may
be discussed. Chapter VII Section D of this volume, which contains
comments on the results of several actual runs with the simulation
mode, will help clarify and explain the many possible uses of this

.portion of STEAP,

A. The Basic Cycle

Recall that in the error analysis mode only two vector quan-
tities, the nominal state vector X and its associated covariance

‘matrix of orbit determination uncertainty P, were carried along



through each step in the basic cycle. Within the simulation mode
there are five key quantities carried from step to step in the
basic cycle. Let t, and terl be the times of the kEE and
k + ISt measurements, with no events between them. Available in
the simulation mode are the five quantities:

1) x(ck)

Xk = Original nominal state vector of position
and velocity at the time tk, designed to

1l

satisfy some set of target conditions
under some set of "integrating" condi-~
tionss

2) X(tk) = Xk = Most recent nominal state vector, only
' different from Xk after a quasi-linear

filtering event that updates the state
vector by the estimate;

3) ka = "Actual" state vector deviation from most
recent nominal trajectory;

4) GXk = Egstimated state vector deviation from
most recent nominal trajectory;

5) Py E l(dxk - ka) (sxk - ka)T} = Statistical
description of orbit determination or
navigation uncertainty after processing
all measurement data up to and includ-
ing the time tk'

The basic cycle of the simulation mode refers to the computa-
tional process by which the subscripts on the above quantities are
changed from k to k + 1., In terms of simulating a real flight,
changing the subscripts implies the processing of another measure-
ment. Before proceeding with a step-by-step discussion of this
basic cycle, it is worthwhile to point out that, unlike the error
analysis mode, the simulation mode is involved in actually process-
ing data to estimate an interplanetary trajectory.  Some "actual"
trajectory is being flown within the computer and simulated meas-
urements from Earth-based tracking stations are recorded, based
upon this "actual" trajectory. These measurements are then proc-
essed in a recursive orbit determination algorithm; thus the sim-
ulation mode provides a check of the orbit determination proce-
dure's ability to reproduce the "actual" trajectory under a wide
set of conditions that might be anticipated on an actual inter-
planetary mission.
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The first step in the basic cycle of the STEAP simulation mode
involves calling the measurement scheduling subroutine with the
latest trajectory time t . The scheduling subroutine, which has

ordered all the measurements to be made during the flight of the
simulated trajectory, returns information on the time tk+l of

the next measurement and the kind of measurement (Doppler data’
from Goldstone, a Canopus-Mars angle, etc) that occurs at that
time. Next the event scheduling subroutine is consulted to deter-
mine whether or not some computational event (such as guidance)
occurs before the next measurement is to be processed. If so,

the basic cycle is terminated, control is returned to another part
of the program, and the necessary event Information is computed.

If no events take place between the time tk of the kth

measurement and the time tk+l of the k + lSt measurement, the

basic cycle next uses the virtual mass trajectory mode, avilable
as an n-body subroutine within both the error analysis and simu-
lation modes, for the computation of the original nominal state
vector Xk+l at the next measurement time. An important point

should be stressed here. Within the simulation mode, two separate
n-body routines are used, both based on the virtual mass concept.

One of these routines, called the actual integrator NTMl, sup-
posedly represents the real world within the program and generates
"actual" trajectory data. The second routine, called the assumed

integrator NTMb, is used for the original nominal targeted tra-

jectory, the updated nominals, and all estimated trajectories. 1Its
fixed time anomaly arc for trajectory computation may be larger
than NTMl,' its ephemeris may be approximate or incomplete, and

its physical constants used for the n-body package may be assumed
in error. The purpose of having two distinct n~body routines avail-
able to the simulation mode is perhaps subtle. When actual space-~
craft flights take place, the real equations of motion governing
the vehicle are mever completely known. Thus, to simulate an in-
terplanetary trajectory in a computer program and make it realistic
it should be possible to show what happens when the orbit determin-
ation algorithm does not have precise knowledge of all the actual
quantities involved. The adoption of two different trajectory
routines should permit a deeper study of the problems associated
with the navigation procedure.



Returhing to the basic cycle, after NTMb is used to calculate
the original nominal state vector §£+1 at the new time, the

assumed integrator is then used to compute the most recent nominal,
ik+l at the new time. If, prior to tk’ there have been no quasi-

linear filtering events that have updated the nominal, then the
most recent nominal state vector Xk+l is the same as the original

B

The next steps in the basic cycle for the simulation mode are
the same as those in the error analysis mode. The new navigation
<+
uncertainty covarilance matrix Pk+l’ the Kalman gain matrix Kk+l’
and the residual uncertainty matrix Sk+l are computed from the

basic Kalman recursive estimation algorithm,

_ + T
Pral - Ykl k Tk %tk T Qe
S =H P+
w1 = Pea1 Prrr Pear T Rps
(133)
- T -1
Kir1 = Pras Bren S
A -

k1 = Tkl T e B Prar

where, as before, ¢k+l K is the required state transition matrix
R !
and Qk+l K 1s the process noise matrix. 7The residual uncertainty
s ;
matrix Sk+l describes the statistics of the actual measurement

residual and is very important in what is known as adaptive filter~
ing, a topic to be discussed in Section D of this chapter. An ex-

tension of the current program to permit the use of adaptive filter-
ing would not be difficult. '

The next steps of the STEAP simulation mode basic cycle are
concerned _with the generation of the '"actual" state vector devi-~
‘aticnS' ka+l at the time tk+1’ referenced to the most recent
nominal trajectory. The complete "actual' state vector at tys
namely Xk + ka, is first used in the actual integrator NTMl
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to obtain a quantity zk+l’ which would be the actual state vector
at tk+1 if there were no unmodeled accelerations between tk
and tr1 However, the program allows for the addition of un-

modeled accelerations &X, &Y, and &Z that integrate into a

state vector addition w . Thus, the required quantity d4X ..
becomes k+l ’ Xle

Xrr = g1 1~ K (134)

where wk+l' is the actual unmodeled addition to the state vector
over the defined interval.

Unmodeled accelerations are permitted to corrupt the actual
state vector for a very definite purpose., Along an interplanetary
flight, many possible sources of mechanical difficulty onboard the
vehicle could give rise to small accelerations. It is important,
for the purposes of the simulation, to determine how the orbit
determination algorithm reacts in the presence of small accelera-
tions about which the algorithm itself has no specific knowledge.

Another digression concerning the underlying philosophy of
the simulation mode is now warranted. Recall that its purpose is
essentially to test a specific navigation and guidance process,
insofar as 1s possible, under real conditions. Four key assumed
statistical descriptions are used by the estimation algorithm to
produce the optimal estimate of the state vector. These four
are the injection covariance PO’ the process nolse matrices
Qk+l,k’ the measurement noise matrices ~Rk, and the midcourse
correction execution error covariances Qj' All of the matrices.

represent assumed errors and their probabilistic descriptiomns.
Obviously the convergence of the estimated trajectory to the
actual trajectory, for a real flight, is a function of the ac-
curacy of these a priori statistics. To test the orbit deter-
mination and guidance process within the simulation mode, actual
injection errors AXO, actual midcourse execution errors, actual

unmodeled accelerations, and actual measurement noise statistics
Bk may be specified by the user. These specifications permit

the study of the effect of bad a priori statistics on the success
of the defined navigation and guidance algorithms.

The final steps of the simulation mode basic cycle are con-
cerned with the computation of the last of the five needed quan-
tities, the estimated deviation 6xk+1 from the most recent



nominal state vector. First, the most recent nominal state vector
Xk+l is used to determine the most recent nominal observation

Yk+1 at the time tk+1' From the measurement scheduling sub-
routine, the kind of measurement made at tk+l
whatever measurement kind is used, there is a functional relation-
ship relating the measurement to the state vector that is given

by

is known. For

4

=f (ikﬂ’ p)

where p are parameters, such as station location coordinates,
that are used in the computation of Y, ;- Next the "actual"

state vector at tyy1e 8iven by Xk+1 + ka+l’ is used together
with actual station location coordinates p to compute Yk+l’
the "actual" measurement that would have been made in the absence
of any instrumentation errors, according to

Yy = F (xk+1, Epa1® 5)

To this quantity is added the "actual' measurement bias b, as
well as the sampled measurement noise Vg1 for this particular

measurement, obtained by randomly sampling the actual measurement

noise covariance matrix Bk+l (which may or may not equal the

assumed measurement noise Rk+1)' Thus the "actual" measufement
at the time Crg1s which is the only output of the actual por-
tion of the simulation mode that is available to the estimation

algorithm, is given by Yk 1’ where

a .
Vetl = Tppp PV TP

The measurement that the estimation algorithm expects or pre-
dicts is next calculated as

~

A

e > 2
Terr = Yirr * P %,k SR

where Hk+l is the observation?matrix relating linear perturba~

- tions in the measurements at the time b1 to linear perturba-

tions about the most recent nominal state vector at the same time.
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If the estimated trajectory and the actual trajectory were coin-
cident at the time tk and the linearity assumptions regarding

the computation of Hk+l and ¢k+1,k were completely valid, and

if, in addition, the measurement instrumentation were perfect,
then the expected and actual measurements would agree. The meas-

urement residual €k+l at the time tk+l is next calculated as

Ex+l T Tkl T kel

Finally, using the standard Kalman filtering equations, the esti-
F 4
mated deviation 6xk+l from the most recent nominal state vector

Xk+l at the time tr is given by

~ o~
T e S W
where Kk+l is the Kalman gain matrix defined earlier.

The presence of large residuals, €t indicates one of two

things: either the noise on the measurements is very high, or
the estimated trajectory is mnot tracking the actual trajectory.
The concept of adaptive filltering mentioned in a preceding para-

graph involves checking the magnitude of the residual vector

€l against its assumed a priori statistics Sk+1 as computed

by the estimation algorithm. A statistical inconsistency between
the two i8 an indication of filter divergence.

The basic cycle of the simulation mode is essentially complete
when the five needed quantities are determined. However, within
the simulation mode of STEAP, three other vectors of particular
interest at a guidance event are computed. These are the actual
orbit determination uncertainty and both the actual and estimated
deviatione from the original nominal. '

B. Guidance Event

Just as in the error analysis mode, the most complex compu-
tational event in the simulation mode is the guidance event. In
the simulation mode guidance event algorithm, not only is the exe-
cution error covariance matrix computed, but also a commanded and



an actual correction must be calculated, based on some guidance
policy and model of the execution process.

Let tj be the time of the jth guidance correction and let
tk be the time of the last measurement before the correction. From
the basic cycle of the simulation mode, the five quantities Yk

~

Xk’ dik, S%k’ and P:, defined in the preceding section, are
available at the time t,. They are propagated forward to the

k
time tj in a normal fashion that mirrors the basic cycle in the
absence of measurements. The assumed n-body routine NTMb is
used to determine Xj and Xﬁ from Xk and Xk' The actual
unmodeled state vector addition wj is calculated from the un-
modeled acceleration specified over the interval At = tj - tk
and, after computing Zj from ik + dik by using NTMl as in
the basic cycle, dij becomes
dX, = 2, + w, - X, (135)

Finally, the remaining two values (GXj and P; follow the pre-~

diction equations of a Kalman estimator,

~ ~

o A

8X, = @,
h| jok %

- +
= @ P t
ik "k @, . + Q.
3 3 i,k QJ’k

(136)

where, as always, ¢j K is the state transition matrix and Qj X
5 9 =2
is the process noise matrix,

At the guidance event, only three of the quantities are addi-

‘tionally changed before returning to the basic cycle. Both Yj

and Xj’ the original and most recent nominal state vectors re-

spectively, are not altered by the remainder of the guidance event
algorithm. However, the other three are operated om at the guid-
ance event according to
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where Qj is the 3 x 3 covariance matrix of execution errors,
AVj is a 3 x 1 vector of commanded correction, and GAVj is the

"actual" error in the correction, All three of these quantities,
as well as other auxiliary values, are computed within the guid-
ance event algorithm of the STEAP simulation mode.

Three guidance policies are also permitted in the simulation
mode. They are the same three -- FTA, three-variable B-plane, and
two-variable B-plane -- as in the error analysis mode. For what-
ever guidance policy is specified a guidance matrix Fj is first

calculated according to the same equations given earlier in Chapter
V, Section E. As part of the derivation of Tj, the variation

matrix nj, of dimensionality either 3 x 6 or 2 x 6 according to

the policy, is computed that satisfies

= §X
6tc nj 5

where Gtc are linear variations in the target conditions and

§X are linear variations in the state vector at the time of the

k|
jth guidance correction. Within the simulation mode, nj is
based on deviations around the most recent nominal to ensure
greater validity of the linearizing approximation.

Once Fj has been computed, the estimated deviation SXj

from the original nominal is determined from



Recall that the original nominal trajectory was assumed to satisfy
certain specified target conditions and thus the midcourse correc-
tion AVj is chosen to null target condition deviations from the

original nominal. Based on a linear, impulsive guidance schene,
the commanded correction AV,  i1s simply

3

AVj = Tj 6Xj (138)

For comparison purposes and to show the sensitivity of AVj to

navigation errors at the time of the jth correction, an auxiliary
vector AVj, called the perfect correction, is determined from

the actual state vector deviation dX, from the original nominal,

]

Since de = Xj + de - iﬁ, the perfect correction is given by

AVj = Pj de (139)

The vector AVe, called the error in the correction due to navi-

gation uncertainty, may be written as

AV, = AV, - 4V, (140)

The commanded correction ,AVj is now used{to determine the

execution error covariance matrix Qj. Recall that in the guid-
ance event algorithm for the error analysis mode, the execution
error matrix Q , in the absence of estimation, was computed from

an effective midcourse correction vector "E AV,|". The calcu-

lation of the execution error matrix Qj in the simulation mode,

as would be expected, is exactly the same, except that now the
components of AVj, the commanded correction, are used to de-

termine the elements of the matrix 6j'

The probabilistic uncertainties in the target conditions be-
before and after the correction, defined by the matrices Wj—
and Wj+ and discussed in Chapter V, Section E, are next cal-
culated to show the target condition gains, or likely gains, from
making the correction.
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The only quantity remaining for the guidance event algorithm
to compute is the "actual" execution error ©&AV,. The same exe-

3

cution error model used In the error analysis mode is again as~-
sumed. If there are a total of n midcourse corrections, then
a 4 xn array of actual execution errors are input to the pro-

gram., For the jth midcourse correction, these actual errors,
which may or may not be consistent with the input variances on

the same quantities used for the calculation of Qj’ are
J th

§¥ = actual resolution error at j correction;

h| th

kY = actual proportionality error at j correction;

ddj, dBj = actual angular pointing errors at jth' correction.

Following the derivation of the execution error 6AV given
in Chapter V, Section E, the actual execution error at the time

of the jth correction is found to be

] 3 .
$\  pAV, sad + AV, av, 687 |,
AV v (sj 5—)+ 1 X _Z 1
3 u
] ]
[ 5y av, av, s8d - pav, sad]-
+ |av, (sj +-15—-) + L Z X 3
| Y p u
' 3, K 1|z
+ |av (s Y- us ik
|~ 2 p B
where
1/2
u= AVX +AV
A\L/2
AVx + AV + 8V,

-~ ”~

i, j, k are the unit vectors in XYZ heliocentric eliptic

system and AVy, AVy, AV, are the heliocentric eliptic compo-

nents of the cammanded correction AV

't

(141)



Before returning to the basic cycle with the necessary com-
puted information, several additional vectors of interest are
calculated. The two most important are the error at the target
due to navigation uncertainty and the error at the target due to
the execution error. Letting nj again be the wvariation matrix,

the error at targét due to navigation uncertainty, defined by
€. is give by

e, = nj {dxj - éXj]

Similarly, the error at the target due to the execution error may
be calculated as

0
e =n, |----—
ex 3| sav

The "actual" error at the target after the correction is the
vector sum of the two above quantities.

C. Other Events

Three other events are permissible when STEAP 1s operating
in a simulation mode. The first two, eigenvector events and pre~
diction events, are just the same as they are in the error analy-
sis mode except that all five quantities must first be propagated
forward to the event time. This is accomplished in the same fash-

ion as it is at the beginning of a guidance event and warrants no
additional comment.

The third event is called a quasi-linear filtering event,.
At a quasi~linear filtering event the original nominal trajectory
is updated by using the most recent estimate. The purpose of the
update is to combat divergence due to the possible invalidity of
the linearity assumption that is the basis for the estimation
algorithm being used., Specifically, updating the nominal trajec-
tory results in better computations of the ¢ and H matrices

being used in the weighting at the time of processing each meas-
urement.

Let t_ be the time of a quasi-linear filtering event and
assume that iﬁ, XE’ 5XE, dXE, and PE

from the usual propagation of the five quantities forward from

have all resulted

(142)

(143)
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last measurement. Defining by i;, X;, etc, the new values

after the quasi-linear filtering event, the computations are

— 4 —-—

el
il

XE + GXE

ol

- A (144)
dXp - 8Xg

£

+ -
PE = PE

From the equations above it is easy to see that the quasi-linear
filtering event effectively just updates the most recent nominal

by adding to it the estimate of deviations from the previous most
recent nominal.

Due to internal complexities of the program, when augmented
states are being treated in the simulation mode, only the posi~-
tion and velocity components of the state vector are updated at
a quasi-linear filtering event. Since all the additional param~
eters in the augmented state are constants that are reasonably
well-known initially, this limitation does not appear to be sig-
nificant.

D. Divergence and Other Problems

One of the purposes of creating such a detailed and exten-
sive simulation mode was to study the problem of filter diver-
gence, The problem of divergence in a recursive navigation
process and a companlon difficulty, computational nonobserva-

"bility, are the subjects of this section.

Strictly speaking, when divergence occurs in a navigation
process, the navigation is failing to navigate properly. The
phenomenon of divergence never appears in an error analysis



mode because no actual estimation is taking place and only covari-
ance matrices are being propagated. In a computer simulation such
as the STEAP simulation mode, where an "actual" trajectory is being
‘flown and concurrently estimated by a navigation algorithm, filter
divergence refers to the fallure of the estimated trajectory to
converge, within reasonable bounds specified by the covariance
matrices, to the "actual" simulated trajectory. For real-world
orbit applications, where the actual trajectory is never known,
divergence is occurring when the residual difference between

predicted and actual observation vectors becomes increasingly
large.

In either computer simulation or a real orbit determination
procedure, divergence in the recursive filter manifests itself
as a statistical inconsistency between the measurement residuals
and the filtering algorithm. Recall that at each step of the

: _ - T .
recursive process, the matrix Sk+1 = Hk+l Pk+l Hk+l + Rk+l is
computed., This matrix defines the a priori statistics associated
with the measurément residual €41+ The measurement residual

€l should represent a sample from the population defined by
Sk+1' When divergence occurs, a group of successive residuals
appear less and less likely, statistically, to have been sampled

from their covariances Sk+l'

To illustrate the divergence manifestation in terms of measure-
ment residuals inconsistent with their a priori covariances, assume
that a scalar range-rate measurement is being taken along an inter-
planetary orbit. For scalar measurements, the matrix Sk+l is a
2
scalar residual variance, call it O+ Suppose that for the first
two hundred measurements, each measurement residual was compared to
its statistical variance by solving

ey =Ky o0, 5 4=1,2, -——, 100

for the value Kj' Suppose further that a frequency histogram of
the values K produced

(145)
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Internal No. Percent Theoretical Percent

-1 1
-3<K<z 79 39.5 38.3
3 1
- -2—_<_K < - ‘2— 55 27.5 24,17
5 1
5
K< - 3 4 2.0 0.62
1 3
- E-f_K <3 38 19.0 24.17
3 )
EiK < T?.— 13 6.5 6.06
5
K < 5 2 1.0 0.62

Without subjecting the above data to a rigorous chi-square

test of hypothesis, it should be clear that the measurement resid-

uals, each of which is assumed to be an uncorrelated, Gaussian,

mean zero random variable, are more or less consistent with their

statistics; that is, the ensemble values for the measurement resid-

uvals look reasonable in terms of their a priori variances used
within the estimation algorithm,

Now suppose that the next nine values of K determined in

j)
the same fashion from the nine measurements following the two
hundredth, are give by the sequence

.K201 = 2.4 K204 = =4,7 K207 = ~6,2

K203 = 4.4 K206 = ~5.5 K209 = -7.8

“From the underlying assumptions of the navigation process, each

of these events, taken singly, is extremely unlikely. However,
the sequence of values given 18 almost totally unlikely and

(146)



should represent a dead giveaway that divergence is occurring.
Without pursuing the mathematics too far, it should be stressed
that if the nine values given in equation (146) were supposedly
chosen at random from a normal distribution with near zero and
unit variance, the governing distribution would fail every test

of statistical hypothesis. Such values for K dindicate that
something in the estimation process 1s definitely wrong: the most
likely candidate for the error is the assumed a priori S matrix
used for weighting by the estimation algorithm.

The hypothetical example given above is typical of the diver-
gence phenomenon that recurs in complex orbit determination proc-
esses. Often, the process converges initially and then, after
many measurements have been taken, divergence begins. A general
explanation for this is that the covariance matrices associated
with the estimated state vector become overly optimistic and,

subsequently, tend to disregard the new measurement data in the
weighting process.

The general cause of divergence is modeling insufficiency,
For most real problems, everything about the dynamical system
and the observations being treated by the filter is not known
exactly. Unless the estimation algorithm acknowledges, in some
fashion, the incomplete understanding of the governing equations,
divergency may result. A familiar source of insufficient model-
ing is the dynamic equations themselves. All the forces acting
on an interplametary spacecraft are never known exactly. In addi-
tion, the filtering algorithm speaks on perturbation equations
resulting from a linearization about some reference dynamic state.
Thus the procedure is working with appropriate equations and unless
process noise is added to the computational algorithm, the Kalman
filter "thinks" it knows the exact equations of motion, whereas
in reality it does not.

Divergence can also result from other model inadequacies.

Among the most frequent causes are failure to account for measure-
ment nonlinearities when the measurements themselves are very ac-
curate, neglect of correlated errors between sequences of measure-
ments taken by the same instruments, and overly optimistic a priori
error statistics describing the measurement noise. Within the sim-
ulation mode of STEAP, the effect of all these model inadequacies
on a specific reference trajectory can be tested.

Many possible solutions to the problem of divergency have been
postulated and investigated. Two of the methods of divergence pre-
vention have been included in STEAP and, because they are the
simplest, they will be discussed first.
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In an earlier section of this report the modeling of a process
noise matrix Qk+l x Was discussed. Between measurements in the
3

estimation algorithm of STEAP, the state vector associated covari-
ance matrix I1s propagated according to the equation

- + T

Wl = Y1k P Pkl T %l k (147)

P
This Q matrix, the size of which is specified by input to the
program, increases the magnitude of the key diagonal elements in
the covariance matrix. Because divergence generally occurs when .
the state vector associated covariances become unduly optimistic
and additional measurements are weighted very slightly, the addi-
tion of Q represents an attempt to systematically downgrade the
dynamics information in favor of the measurements.

Although the addition of a proper Q matrix will impede di-
vergence, unless its size is determined by physical considerations
it can also slow convergence. Most often the Q matrix is some-
what arbitrary and its exact influence on the estimation algorithm
1s not clearly understood, Thus attempts should be made, based
on the modeling for a particular problem, to ensure that the ele-
‘ments of Q are realistic.

A second method of divergence prevention included in STEAP
involves what is known as quasi-linear filtering. The fundamen-
tal estimation process assumes that variations about the nominal
trajectory and nominal measurements are linear. In the case of
highly accurate measurements, which is usually the case of inter-
planetary spacecraft tracked by the DSIF, measurement nonlinear-
‘ities become significant model inadequacies when the actual tra-
jectory 1s only slightly different from the nominal. Quasi~linear
filtering essentially permits more accurate computation of the -
linear perturbation matrices ¢ and H. This is accomplished by
updating the original nominal trajectory, based on the est:imated
state vectors coming from the navigation algorithm, and then com-
puting both the state transition and observation matrices in
terms of linear perturbations about the updated nominal.

The inclusion of gugmented state options in STEAP, which re-
-sults in larger covariance matrices associated with the state
vector because of uncertainties in dynamic or measurement con-
stants that are treated by the process, is an indirect attempt
to combat divergence in the presence of known modeling insuf-
ficiencies. However, within the current version of STEAP, the
‘augrpented state vector options operate only in what is known as
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a "solve for" mode; that is, the error analysis mode systemat-
ically reduces the uncertainties in the augmented parameters as
if they were being estimated by the underlying algorithm. Simi-
larly, the simulation mode actually estimates the augmented quan-
tities in the state vector,

Treatment of errors in dynamic or measurement parameters with-
out actually estimating them or augmenting the state is generally
called the "consider" mode. Essentially the "consider" divergence
prevention method actually calculates the process noise matrix
Q over each Interval based on physical assumptions on the size
of the parameter uncertainties. It is hoped that such a practical

approach to the computation of Q will be included in STEAP in
the near future.

Of the other methods for handling filter divergence that have
been suggested in the literature, the strongest appears to be
adaptive filtering. Reference 13 explains the theoretical basis
for several kinds of adaptive filtering schemes. The essential
idea of adaptive filtering is the feedback of actual measurement
residuals into the covariance matrix propagation process. Earlier
it was pointed out that a sign of filter divergence 1s a statis-

tical inconsistency between the measurement residuals S and

their assumed a priori covariance matrices Sk+l used by the es=

timation algorithm. In adaptive filtering, this statistical in-
consistency is used to change the assumed a priori statistics, on
both the dynamics and the measurements until the residuals and
their updated covariances are more or less consistent. Optimal
implementation of adaptive filtering is being pursued by several
researchers in the field.

Another problem associated with interplanetary orbit deter-.
mination that can be studied with the STEAP simulation mode is
that of computational nonobservability. Because this problem
threatens to occur whenever strictly Earth-based tracking is being
used to determine the orbit of a spacecraft around the Moon or
another planet, it warrants attention.

In classical batch~processing algorithms, observability does
not exist when a key matrix inverse used to determine the esti-
mate does not exist. In a recursive algorithm, nonobservability
manifests itself when one of the correlation coefficients relat-
ing uncertainties in different elements of the state vector has
unit magnitude. Physically this means that the navigation proc-
ess cannot observe or estimate the two quantities that are either
positively or negatively correlated uniquely. The orbit deter-
mination procedure has no unique convergence in this case.
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When the correlation coefficients relating uncertainties in
two elements of the state vector are very close to unity in mag-
nitude, then the underlying estimation algorithm 1s very unstable.
Although theoretically a unique solution still exists, any model
inadequacies can produce wild gyrations in the estimated solu-
tions. Preliminary studies with STEAP of orbit determination
processes using Earth-based tracking for spacecraft in Moon or
Mars orbits indicate that the above orbit determination insta-
bility, called computational nonobservability, is very much a
real problem.



VII. NUMERICAL RESULTS

This chapter deals exclusively with results obtained from
using the Simulated Trajectories Error Analysis Program. The
commentary in this chapter should enhance the user's knowledge
and appreciation of the studies that can be conducted using the
program.

There are four separate sections in this chapter. Each sec-
tion is concerned with example runs obtained .from one particular
operational mode of the program. The first section presents ex-
ample results from the trajectory mode. Sample runs with the
fargeting mode are contained in the second section. The lengthy
third and fourth sections discuss example runsg made with the many
options of the error analysis and simulation modes. '

A. Trajectory Mode

In this section of the report, a detailed description of the
uses of the trajectory mode will be presented. It is assumed
that the analytic techniques used within the program -- the
virtual mass integration scheme, the ephemeris employing mean
conic section orbital elements, etc -- are now well known. Hence
the detailed discussion to follow will concentrate on the uses
of the trajectory mode and will attempt, insofar as is possible,
to explain how the program may be used most efficiently. Many
sample runs have been generated and it is hoped that the knowledge
gleaned from these runs can be successfully passed on.

One of the most important variables to be understood when ac-
tivating the trajectory mode is what is called the accuracy level.
As mentioned in an earlier section, the accuracy level is a vari-
able developed when the virtual mass program was used for analysis
of Earth-Moon trajectories. At that time it referred to the
likely ratio of the error in pericynthion passage distance to the
distgnce itself. Because of the inner logic of the program its
use has been retained in the program, although it is now, strictly
speaking; a dummy variable with no intrinsic meaning when applied
to interplanetary trajectories.

For any set accuracy level, the program automatically computes
the step size to be used in the "integration" (the word "integra-
tion'" is placed in quotes because, as is known, the virtual mass
program does not ever use any quadratures). The computational
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step size in the program is a fixed true anomaly arc relative to
the virtual mass. As can be seen from table 1, an accuracy level

of 1.25 x 10-4 corresponds to a true anomaly increment of 35.946
7

mrad. Similarly, if the external accuracy level is set at 2 x 10” s

then each computational step within the program allows a time
passage that is commensurate with a true anomaly arc of 1.698

mrad on a conic section arc about the most recent virtual mass.

By determining the step size from a fixed true anomaly arc rela-
tive to the effective force center, the '"integration" automatically
takes smaller steps when the spacecraft is in a critical region
near a planet. Conversely, large steps are automatically taken
during the essentially heliocentric phase of an interplanetary
orbit.

The first detailed study on the capabilities of the trajectory
mode was aimed at determining the effect of varying the accuracy
level (and hence the step size used in the "integration') on the
resulting computed trajectory. The results of this study are sum-
marized in tables 1 and 2. Two sample trajectories were chosen,
one passing very close to Mars and chosen in the middle of the
tentative Viking launch window, and another direct shot from the
Earth to Jupiter passing within four Jupiter radii of the large
planet. As would be expected, the Mars-Viking run is extremely
sensitive to any changes in the computational procedure and the
results of increasing the accuracy level for that base trajectory
do not demonstrate the relatively "clean convergence" shown by
table 2 for the Jupiter trajectory.

Examining table 1 in some detail gives a fairly definite pic-
ture of the effect of the accuracy level on the computations.
Included in the table are the results of five separate computer
runs. For each of the runs, everything was exactly the same
(that is, same injection conditions, same ephemeris computation,
same printout specifications, etc) except for the accuracy level
employed. Table 1 lists, for each run, the total CDC 6500 com~
puter time for the run, the number of individual computational
steps within the run, the computational time for each increment
within each of the runs, the number of steps to the Martian sphere
of influence, the calculated trajectory time to both the Martian
sphere of influence and the point of Martian closest approach,
the radius and velocity at closest approach, and the quantities
VHE’ BT, B*R (defined in the usual manner) at the Martian

sphere of influence. It should be mentioned that runs at a‘higher

accuracy level than 2 x 10“7 did not produce significant differ-
ences from the values listed for Run 5404; thus it can be assumed,

‘116



*za31dnr ung ‘yzaey = staeweydy :9ION

865 104| 09% 00/ | 0€€T™L | 22S°0E | ¥0S 98¢ | 9€59°GTL | 9IET 9%9 0168 651070 87E 91 92L7¢EST 2.01 X T | %029

SOT 10L| S81 00L| 6Z€Z°L | €€5°0€| ¥8Z 987 | 8869°STL | €9€1°9%9 ey 091070 (472N €66°€C1 .01 X T ]€029

0%0 004| S19 669 L2€2°L | ¥SS 0€| €88 G8Z | €0£9°GTL | OLST9%9 €202 691070 699 ¢ 961729 .01 ¥ 6| 2029

09Z 669 OET 869 | 61€2"°L | €29°0€ | 8¢S ¥8T | ESTL STL | 8¥61°9%9 696 0610°0 o8&l 1 [{ A s.0T X 672 | 1029

L2% LL9] TTT $69 | ¥8CZT L | %#98'0€| €S8 647 | €906°STL | SOSE 999 8% H€T0"0 8€8 85761 $-0T ¥ 621 10029

nex ﬁsx owwmsx uwwwex AMM wmwvopww mMM@mPMMm 10§ 01 nuumﬁwwwuw aaqumy 29s‘awIy 19437 *ou

a-g I-9 A A £ JuBT1a 24BT1a $3USWO IDUT 19¢ swrp Juswexouy | a8jndwo) Loranooy. uny

SISXIVNY ADVMAOOV 40 X¥VIGNS ‘NMY ¥ITLILNL - 2 FTIVE
*1931dnp ‘ung ‘saey ‘yjaey = STadwoydy eION
STL- £8%6 8788°Z| 688" % | #5% ¢ 0SI%°L61 | 210Z°S61 8€L6 9610°0 €06 61 | LOT'ELE 869°1 20T % Z 1 098
£86- 1€¢6 6288°T| 9S6°% | €T ¢ STIYTL6T | T66T°S6T 6£9Y L610°0 0LT 6 €277 281 109°€ .01 ¥ 1] €096
08S 128L G788 z) €766 | S08 € 61Z%°L61 | T#212" S61 8127 802070 Liy % 1107€6 969° L o 0T * &1 2O%S
09y 8 | €%e- £088°7| £60°G| 028 v | 1888%°L61 | T9vwLT°S6T €401 GETO'0 610 T 9/8"8% 046791 s-0T ¥ 672 | 10%S
86¢ v | £9eve- | 2eL8°z) 921°¢ | 217 16| TEWTB L6T | T9ELS G61 9Ts 2Z€0°0 008 98" ¥z 996" G€ »-01 X SZ°T | 00%S
. . peaiw

- = uwwmax owwwex .Mw mzmw m%ﬂm mmwm m%wm 108 03 mummwwwucﬂ xoqunu .wwmu ‘uMmEmuuaﬂ A%Hm>wq “ou
¥-g 19 A A a1 198114 B sjuswWaIOUT 30d aurp JUSWI IDUT 133nduwon MM_“M_E oBIANDIY uny

SISATYNY XOVINDOV 40

AEVIHNS “NOY ONINIA-SUVW -"1 HT19VL

117



-7
for this base trajectory anyway, that an accuracy of 2 x 10 is

sufficient for generating a very accurate trajectory computation
(no equinox or ecliptic rotations, no oblateness for the Earth,
no solar pressure, etc), there will probably be very few times
when such a high accuracy level is needed.

The key factor governing total computation time is the number
of increments used to generate the trajectory. Basically, the
total time used by the program to calculate the trajectory is
seen to be between 0.02 and 0.03 sec per step used in the calcu-
lation. Although the discrepancies in terms of target conditions
for the various accuracy levels are quite high when viewed from
a totally precise n-body trajectory computation, it should be
remembered that the trajectory itself is tremendously sensitive
to any changes, a fact that is demonstrated by the detailed fig-
ures that follow.

Comparing two different trajectories on which the accuracy
study was made (tables 1 and 2), a considerable amount of agree-
ment is found in essential quantities. For example, an accuracy

level of 1.25 x 107 produces a B-T and B:R bias of roughly

45 000 km when compared to the highly accurate (2 X 10-7) run for
the Martian trajectory. The Jovian trajectory, admittedly less
sensitive, shows a B:T, B:R change of less than 25 000 km when

the accuracy level is increased from 1.25 x 10_4 to 2 x 10—7.

Similarly, increasing the accuracy level from 5 x ].O-6 to 2 x 10.-7

makes a B-T, B+R change of about 1500 km in both the base
Martian and the base Jovian trajectories.

Although the target planet changes may seem alarmingly large,
examination of tables 3 thru 5 and figures 6 and 7 show that it
is the high sensitivities of these trajectories that are accounting
for the differences. For example, consider table 3. That table
gives the aerocentric ecliptic deviations of each of the accuracy

level runs from the most accurate run (2 X 10-7), which is Run
5404. Six days into the trajectory, which is well past the Earth
sphere of influence, the least accurate trajectory considered

(accuracy level 1.25 x 10 4) only varies from the most accurate
trajectory by 500 km and 1.8 m/sec. Because of the sensitivity
of the trajectory, these differences are magnified to 109 000 km
and 15.366 m/sec at 194 days, which is near the Martian sphere
of influence. Similarly, the next most accurate trajectory {Run
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TABLE 3.- MARS-VIKING RUN, DETAILED ACCURACY ANALYSIS

FOR 6, 30, AND 60 DAYS

5400 5401 5402 5403
, 6 days
Ay, km -408 -69 1 11
Dy 350 84 25 10
Az -36 -5 1 2
AR 538.8 108.8 25.04 15
Ax, m/sec -1.339 -.251 -.022 +.017°
by +1.199 +.277 ° +.074 +.025
Oz -0.093 -.015 .001 .003
Av 1.80 374 .007 .030
30 days
Hx, km -8 360 -1 771 -302 1
Ay 6 660 1 530 366 94
Nz -328 -57 0 9
AR 10 694 2 341 475 9.4
Ax, m/sec -3.681 -.781 -.136 -.002
Ay 2.765 .628 . 147 .035
AV -. 144 -.026 -.001 .003
Av - _4.606 1.003 .200 .035
60 days
Ax, km -21 200 -4 520 ~-786 15
Ay 13 500 3 110 726 174
Az -778 -143 -7 15
OR 25 200 5 488 1 070 175.3
- Ax, m/sec -6.056 -1.288 -.266 -.006
Ay 2.208 498 113 .025
Az ~.201 -.039 -.004 .002
Av 6.449 1.382 .253 .026
~ Note: 1, All A values are referenced to components of
Run 5404 at that time.
2. Coordinates are areocentric ecliptic,
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TABLE 4.- MARS-VIKING RUN, DETAILED ACCURACY ANALYSIS

FOR 90, 120, AND 150 DAYS

5400 5401 5402 5403

90 days
Ox, km -40 100 -8 500 -1470 -21
Ay 16 500 3 780 898 225
Az -1.410 -272 -25 19
AV 43 380 9 307 1723 227
Ax, m/sec -8.044 -1.696 ~.284 .004
by -.236 -.030 .012 .016
Lz -.282 -.058 -.009 .001
AN 8.052 1.697 . 284 017

120 days
bLx, km -61 200 -13 100 ~2220 13
Ay 11 600 2 800 783 271
Az -2 230 -441 -50 22
AR 62 300 13 400 2355 272
Ax, m/sec -8.452 -1.761 -.275 ~-022
by -3.548 -.726 -.101 .020
Az -.338 -.069 -.010 -.001
Av 9.173 1.906 .293 .030

150 days
Ox, km -83 000 -17 400 -2870 +90
Ay - 1.850 39 394 344
oY - 3 140 -629 -79 25
AR 83 100 17 401 2898 357
Ak, m/sec -7.346 -1.510 -.218 035
by ' -6.700 -1.371 -.192 .037
Dz -.348 -.072 -.011 .001
JaNY 9.949 _2.041 .291 051




TABLE 5.- MARS-VIKING RUN, DETAILED ACCURACY ANALYSIS

FOR 180, 194, AND 199 DAYS

5400 5401 5402 5403

180 days
Ox, km -99 300 -20 700 -3 310 193
Ay -20 700 -3 630 -65 497
Az -3 950 -792 -102 29
AR 101 500 21 030 3 312 534
Ax, m/sec -5.205 -1.055 -.135 .039
Ay -9.552 -1.981 -.271 .059
Az -.299 -.063 -.009 .001
Av 10.882 2.245 .303 .071

194 days
Ax, km -104 300 -21 700 -3 450 319
Ay -31 000 -5 800 -358 566
Az -4 040 -811 -105 30
AR 108 900 22 480 3 470 650
A%, m/sec -5.102 -1.016 -.121 .046
Ay -14.,473 -2.857 -.409 .062
Nz .779 .187 .026 -.007
Av 15.366 3.038 427 .078

199 days
Ax, km 247 500 289 000 -55 400 -10 900
Dy -184 800 -170 100 -4 450 -3 530
Az -13 700 308 900 75 400 -6 030
AR 309 200 455 900 93 700 12 950
L%, m/sec 2962.6 2421.9 -422.8 -82.95
Ay -1182.4 ~1324.8 -37.471 -35.13
Nz -24.51 2573.5 599.526 -475.01
Dy 3189.9 3774.1 734.6 483.5
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Figure 6.- Accuracy Analysis in Detail, Plot of AR vs Trajectory Time
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Figure 7.- Accuracy Analysis in Detail, Plot of AV vs Trajectory Time
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5403 at an accuracy level of 1 x 10 6) is different from the most
accurate trajectory by only 15 km and 3 cm/sec after six days.

This difference becomes 650 km and almost 8 cm/sec near the Martian
sphere of influence.

Another striking feature of these trajectories is shown in
table 5. It has long been an established fact in interplanetary
trajectory analysis that swingby trajectories are incredibly
delicate and highly sensitive. Readings from these accuracy
studies were taken at 199 days, when the hypothetical spacecraft
was about to leave the Martian sphere of influence and enter an
orbit about the sun. The data shown comparing the various ac~-
curacy level runs with Run 5404 at 199 days confirms the almost
amazing sensitivity of the swingby trajectory. Most important
are the velocity discrepancies. Although Run 5403 (at accuracy

level 10—6) only differed from Run 5404 (at accuracy level 2 x 10-7)
by 8 cm/sec going into Mars, its velocity difference coming out
of Mars is an incredible 483 m/sec!

Figures 6 and 7, which were compiled using the data in tables
3, 4, and 5, demonstrate clearly the computational procession
from the least accurate to the most accurate trajectory in the
accuracy level study., These graphs do not include the rapid AV
increases near the planet Mars; the increases were too large for
the scale.

The second kind of major study that was performed using the
trajectory mode was an ephemeris analysis. The results of this
study are summarized in table 6 and the locations of the various
planets involved are shown in figures 8(a) and 8(b). For the best
trajectory, also from the Mars-Viking launch window, the Earth's
Moon was in a moderately favorable position; that is, the trajec-
tory's closest approach to the Earth's Moon was at injection.

The purpose of the ephemeris analysis was to isolate the ef-
fect of each individual body in the solar system on a typical
Viking trajectory. The results were startling. An additional
purpose of the study was to ascertain the additional computer
time required in using additional bodies for the ephemeris com-
putation. The ground rules of the study should probably be ex-
plained before the results are interpreted. First, the same
accuracy level, and hence the same step size, was used for all
the runs. Second, exactly the same injection conditions, print
out schemes, and interior logic were used for all the runs. 1In
sum, the only difference between all the runs in the ephemeris
analysis were the bodies included in the trajectory computations.
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SCALE: 1 cm =2 x 10" km
LEGEND: Shading of bodies indicates
portion of trajectory com-

. pleted at given point.

9
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Figure 8.- Position of Planets during Test Trajectory
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Figure 8.- Concluded
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A base run was made including, in the ephemeris, the Earth,
the Sun, Mars, and Jupiter. The next run included the Earth's
Moon together with the base bodies. A second run dropped out
Jupiter, and considered only the Earth, the Sun, and Mars. The
remainder of the runs included the Earth, the Sun, Mars, Jupiter,
and one other planet (listed in table 6 under ephemeris descrip-
tion), except for Run 5902 which will be discussed in more de-
tail later. The last four columns of the chart show the changes
in key target-related quantities due to the inclusion or exclu-
sion of each of the bodies. The results again verify the extreme
sensitivity of interplanetary trajectories.

Outside of the Earth, Mars, and the Sun, table 6 demonstrates
that the most important body on a Mars-Viking flight is the Earth's
Moon. Its perturbation on the trajectory amounts to almost 400 000
km in B-R and over three and a half days in the trajectory time
of flight to the Martian sphere of influence. It is important to
note that for this study the Moon was on the opposite side of the
Earth from the escape trajectory. One can immediately conjecture
what a tremendous influence the Moon would have on a Martian flight
passing even reasonably close to the Moon during escape.

In order of their magnitudes, the next most important bodies
were shown to be Jupiter, Saturn, Venus, Uranus, Neptune, and
Mercury. This order might well have been predicted, but the size
of the perturbations was considered large. For example, both
Saturn and Venus cause perturbations of over 1000 km in the B~
plane quantities generally used for guidance. The three planets
Uranus, Neptune, and Mercury, when their effects are combined,
make over 100 km difference in B-R.

The question was raised, following the ephemeris analysis,
whether or not the perturbations due to Uranus, Neptune, and
Mercury could be regarded as computer noise. In an attempt to
answer that question, Run 5902 was made with the base ephemeris
plus the five extra planets that had previously been considered
separately. The agreement between the resulting deviation from

- base Run 5402 and the sum of the deviations noted during each of

the individual runs led to the conclusion that the perturbations
on the trajectory accorded to each of the planets in the chart
was accurate to within 10%. The cross-coupling between the ef-
fects of Saturn and Venus could also explain why the sums did not
exactly agree with the results of Run 5902. The conclusions of
the ephemeris analysis are, therefore, that the perturbations on
a typical Mars-Viking run due to various other planets and bodies
are essentially as given.



The computer time listed for each run should be clarified.
For example, it took less computational time to calculate the
trajectory with the Earth's Moon in the ephemeris than it did
without it. On closer analysis, it is seen that the trajectory
calculated with the Moon in the ephemeris did not pass very close
to the surface of Mars, and hence not many small increments were
needed to compute it. Similarly, Runs 5602 (with Saturn) and
5902 (with all the additional bodies) impacted Mars, thus stopping
the integration. The most reasonable conclusion from the computer
time column of table 6 is that a restricted five-body trajectory
leaving Earth parking orbit and passing about 500 km above the

surface of Mars, computed at an accuracy level of 5 x 10-6 and
stopping at the outgoing Mars sphere of influence, requires about
93 sec of CDC 6500 computer time. The addition of an extra body
adds approximately 16 sec to the time required for the computa-
tion.

Tables 7 and 8 give more detailed information about the ephem-
eris analysis. All the A quantities shown are referenced to the
base Run 5402 with Earth, Sun, Mars and Jupiter in the ephemeris.
The charts show the perturbations due to each planet at selected
trajectory epochs. The variations due to Uranus, Neptune, and
Mercury, for example, are less than 1 km and about 1 mm/sec after
six days of flight. These perturbations are magnified consider-
ably by the state transition matrix over the flight. Figures 9
and 10 show the AR and AV perturbations due to each of the
planets throughout the trajectory. The results appear to be more
or less as expected except for the magnitude of the perturbations,
as mentioned earlier.

A final comment from the ephemeris analysis is directed at the
last set of numbers in table 8. Again all numbers are referenced
to base Run 5402 except that now the trajectory time is 199 days,
or roughly a day and a half after closest approach. The magnitudes
of the deviations are quite large and serve as additional proof of
the inordinate sensitivity of all ballistic swingby trajectories.

Imagine, for example, that the trajectory was designed ballistically

to continue on to Jupiter. The total integrated effects of even
Uranus, Neptune, and Mercury on such a swingby trajectory would
also be large.

The final trajectory mode study, which is summarized in table
9 and given in detail in table 10, was a targeted accuracy analy-
sis study. The purpose of this study was to try to obtain the
same target conditions for runs at a different accuracy level and
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then observe the changes or deviations in the injection conditions.
A proposed targeted ephemeris analysis study was discarded due to
the expense of obtaining, from the targeting mode of the program,
proper results to conduct the analysis. Recall that the earlier
accuracy analysis study used the same injection conditions and
then looked at target condition variations; the targeted study
considers, for the different accuracy levels, the differences in
injection conditions required to meet more or less the same target
conditions.

The target conditions set up were BT = 9215, B+R = -990,

and tgr = 90.12497. Targeting runs at accuracies of 5 x 10-6

and 2.5 x 10"5 were considered acceptable when AB‘T and AB-R
were less than 75 km and tSI was less than 0.0005 days. Greater

tolerances were considered acceptable for the less accurate

1.25 x ],O“4 run. The numbers of table 9 should therefore be com~
pared with table 1 for complete understanding. It is clear from
this comparison that each of the so-called "targeted" runs is
close enough to permit interpretation of the injection condition
difference as being due to the accuracy level difference.

The most interesting results from the targeted study are con-
tained in the columns of table 9, which gives the A-injection
velocities compared to the most accurate run. TFor example, the

injection veloceities for a targeted run at 5 x 10-6 vary from
those at 1 x 10—6 by less than 1/4 m/sec. Even the worst accuracy

level, 1.25 x 10-4, shows an injection velocity variation of about
5 m/sec for the worst components -~ values that are less than 0.1%
of the needed, geocentric ecliptic injection velocities. Table.l0
shows detailed variations of the various targeted runs from the
most accurate run.

The user of the trajectory mode must somehow analyze data
similar to those presented and, for each use of the trajectory
mode, determine its most efficient use. From the targeted accuracy
analysis studies, it would seem that targeted run at a low accuracy
level will produce a trajectory with the necessary characteristics
for a detailed mission analysis. There is some question also
whether or not using the trajectory mode in an extremely high ac-

cufacy 2 x 10—7 or even 1 % 10'-6 makes much sense because of
all the factors currently neglected in the n-body computation.
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Figure 9,- Ephemeris Analysis in Detail, Plot of AR vs Trajectory Time
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TABLE 10.- MARS-VIKING RUN, DETAILED TARGETED
ACCURACY ANALYSIS FOR 20, 100, AND

197 DAYS
5450 5451 5452
6 days
Ax, km 475 93 12
Ay -689 -136 -24
Nz 152 21 1
AR 851 166 27
AX m/sec 111 .023 .002
Ay -.173 -.033 -.006
Az .086 .012 .001
Av .223 042 0064
100 days
Ax, km 199 18 37
Ay -1170 =223 -38
Az 470 62 2
AR 1276 232 53
Ax, m/sec .038 .005 -.007
N -.069 -.015 -.005
Nz 014 .002 .001
AN .080 .016 .0087
197 days
Ox, km 141.3 -0.4 -69.1
Ay -711.7 -129.9 -164.8
Nz 308.6 49 .6 48,2
AR 788.5 139.0 185.1
Ax, m/sec 212.84 42.58 56.11
Dy -199.66 -25.98 -7.69
Az -21.67 -2.91 4.57
Av 292.63 49.96 56.82
Note: 1. All A values are referenced to com=-
ponents of Run 5453 at same time.
2. Coordinates are areocentric ecliptic.
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B. Targeting Mode

1. Introduction.- Numerous targeting problems were investi-
gated during the design and construction of the targeting scheme.
Typical examples will be given in this section to demonstrate
both the scope and operation of the developed program.

A brief survey of the input data reveals the general range
of applicability of the program. The required data includes the
initial date, the target date, the gravitational bodies to be con-
sidered in the integration (including the launch and target planets),
and the numerical differencing increment by which the velocity com-
ponents are perturbed in computing the state transition matrix.

The desired final accuracy level along with the intermediate accur-
acy levels to be used by the n-body subroutine are also specified
by the user. The remaining options, which define the injection and
target conditions, provide the capability for solving a wide range
of problems.

Two options were allowed in the specification of the in-
jection conditions. Generally, the injection position and zero-
iterate injection velocity are computed internally from the mission
constraints as described earlier. For this case the exact time of
injection on the specified initial date is computed and the posi-
tion and velocity are based on this corrected time.

A second injection condition option permits external speci-~
fication of the exact injection time, position, and zero iterate
velocity. In this option, the initial time is specified to thou-
sandths of seconds, while in the first option it is generally pre-
scribed only to a given day. The second option extends the analyti-
cal capability of the program. Midcourse corrections may be studied
by specifying vehicle position and velocity at various times along
a previously targeted trajectory and computing the velocity required
to meet perturbed target conditions. In the same way one may com-
pute the deflection velocity required by an entry vehicle ejected
-from a probe moving on a previously targeted swingby trajectory.
This option also permits the efficient completion of partially v
targeted problems. Partially targeted problems may arise when the
targeting algorithm generates a set of reasonably accurate injec-
tion conditions before encountering a region of strong nonlinearity
where the previously computed state transition matrix is invalid.

To target to within stringent tolerances on the target conditions
in such a region, it may be necessary to reduce the velocity incre-
ment used in computing the state transition matrix.
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There are four basic options permissible for the target
conditions as well as two auxiliary options. The auxiliary op-
tions are quite similar. 1In the first guxiliary option, injec-
tion conditions are computed from a crude patched conic trajectory
based on the launch date and planet and the target date and planet.
These conditions, termed the point-to-point conditions, are gen-
erated with a bias which, while improving their effectiveness as
initial values for n~body trajectories, degrades their validity
in a patched conic propagation. For this reason a second auxil-
iary option is provided that calculates the unbiased patched
conic injection conditions. These conditions would be a suitable
zero iterate for determining targeted patched conics. Currently
these patched conic conditions are never used internally by the
program. Nevertheless the option is included in anticipation of
the time that a patched conic propagation capability may be pro-
vided in the program.

Under the four basic targeting options, injection condi-
tions result that are consistent with specific target conditions
based on n-body trajectories. Option 3 includes the impact plane
parameters B-T and B-:R (targeted to selected tolerances) and

an approximate time at sphere of influence tSI' The fourth op-

tion targets to all three sphere of influence parameters. In
option 5, the radius of closest approach rCA’ the inclination at
closest approach iCA’ and time at closest approach tCA are

met approximately. 1In the sixth and final option of the targeting
mode, all three closest approach conditions are satisfied to input
tolerances. An analytical discussion of all these target condi-
tions is provided in Chapter IV. The target conditions are sum-~
marized in table 11 for easy reference. Note that in option 5 the

tolerances are given in terms of B+T, B-R, and tSI while the

target conditions are Loar Toar and tCA' In this option the

closest approach conditions are first converted to sphere of in-

fluence conditions B:T, B-‘R, and tSI' and the iterative pro-

cedure is continued until these values are met to the tolerances
AB-T, AB‘R, and AtSI' In option 6 the process proceeds in a

similar manner but adds a step at the end to target to the speci-
fied closest approach tolerances AiCA’ Ach, and AtcA.



TABLE 11.- SUMMARY

OF TARGET OPTIONS

Option Title Required input
1 Point-to-point tl’ t2’ ml, m,
2 Patched conic tl, t2, m,, m,
3 2-variable SOI |t , tor, m), my, .., m , ACC, B-T, B-R, AB-T, AB-R
4 3-variable SOI [t,, tgy, my, my, ..., m , ACC, B-T, AB-R, AB'T, AB'R, Aty
5 Approximate CA tl’ tCA’ wy, W, > Mo, ACC, iCA’ rCA’ AB-T, AB*R, AtSI
6 Strict CA tl’ tCA’ my, W, S Mo, ACS, iCA’ Tops AiCA’ AmCA’ AtCA

2. Targeting to closest approach conditions (target options

5 and 6).- Since a target option 6 problem essentially demonstrates

the features of all the targeting options and completely includes

a target option 5 problem this example will be discussed in detail.

Tables 12 and 13, which supply the actual computer output for the
example problem, will be used as references.

Table 12 summarizes the preliminary work of the targeting

algorithm. The general mission constraints are:

Launch

Target

Gravitational bodies (5):
Mars (target planet), Jupiter, Moon.

date: 7/24/73;
date: 2/16/74;

Sun, Earth (launch planet),

The injection option is set so that the injection position and
zero-iterate velocity are computed internally in the program using
The target conditions and toler-
ances are specified (option 6) as:

the point-to-p

tca T

Tea

tea

oint conditions.

38°
4800 km

2/16/74

AiCA

AECA

At

CA

0.25°

25 km

0.001 day
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TABLE 13.- ACTUAL TARGETING PROCEDURE

NUMERTCAL NIFFERENCING ©ROCEDURE

LIS A X Y z TRAJECTORY TRAJECTORY TRAJEZTORY  TARGET TARGET TARGET TIME TOTAL MO
VTT < o} n D 8T BeR TST . B.T/INCL  Bl.R/RCA TS1/TCa _ pFR  CP oF
EEfE [ a o o oR OR (13 L o INTEG TIME INTFG
LRP ¥ T T T InNeL RCA TCA STATE TRANSTITTON MATRTX (SFCY (SEC) INCR

TARGETING AND CONSTRUCTTON OF SPHERE=OF=INFLURNCE STATE TRANSITION MATRIX

1 0 0 5.,00F=04 34,386674 12518986 64164171 =160137,77 122307.69 27072.827 5076468 6930,76 27072,348 5,86 6.1 353
101 5.006=06 34,386686 12,518986 64164171 =159992,04 121656,42 27072,822 =).25E=0T7 5e31F=07 =7.926=02
1 0 2 5.00e=06 34,386674 12.518996 6.164171 =160251,07 122573,48 27072,829 «1,87E=07 BN6E=N9 =6,88£~03
10 3 S.00F-04 34,386676 12,518986 60:16818) =160046,14 121883,85 27072,826  7.48E=08 ~8¢35E=N7 1.17E«01
11 0 5.00r=04 34,342674 12.490438 64216604 =20272,15 1648999,45 27073.464 6112411 6965,06 270724276 5,97 29.7 558
1 1 1 Se00E=06 34,342654 124450438 60216694 =20132.54 148326,10 27073.459 =~3,23E=0B 5e20E~07 =Te74E=02
11 2 5.00E-04 34,342674 12.490448  6.216694 =20382,10 149259,00 27073.466 ], T6F«07 3406E~09 =5.55E=03
1 1 3 S5.00E=04 34,342674 124490438 64216704 =20186,61 148574,29 27073.461 .=5,60F=08 =Re59E=0T 1419E=01
12 0 5.00F=04 34,358787 12.492152 64195468  10751,43 744,36 27072,307 5099,87 6929.76 27072.256 6,28 53,9 27}
1 2 1 5.,00E=04 34,358797 12,492152 64195468 10917,11 92,12 27072.303 =1,58E~08 4¢20E=07 *7.36E=02
1 2 2 5.00F«04 34,358787 12,492162 64195468 10631,94 994,86 27072,308 ©1,74E=07 «3427E=09 =6.84E=03
1 2 3 5,00g=04 34,358787 12.492152 60195478 10851,.45 337,37 27072,304 =8, 19E=08 =7+00E=07 1+13g~0l
1 3 0 5.00F=04 34,365213 12.403463 64185835  4867,09  6621,97 27072,254  5098.80 6930,70 27072.260 6,28 79,1 37
1 3 1 5,00E=04 34,365253 12.493463 64185835 5031,29 5972,4¢ 27072,250 =1,93E=08 4425E=07 =T434Ew02
1 3 2 500g=04 34.365273 12+493473  6:185825 4744013 68B0+87 ‘270724256 =1.70E07 =5992E~n9 “6~10£~03
1 3 3 G.00E=~04 34,.365213 124493463 60185835 4966,08 6218,22 27072,252 =7,78E=08 «7+12E=07 1elé4E=01

1 4 0 5,00F=04 34,364974 12,493387 6,186248 5076.49 6968,35 27072,260 5098490 6930.74 27072.250 6,27 104,3 277
TARGETING TO SPHERE«OF=INFLUENGE CONDITIONS

- - = . by -
2 0 0 2,50E-05 34,364914 12,463387 64186248 122071,78 -187536,25 27071.252 4897,54 6R67,20 270724439 23,90 12R,2 1335

w
o
>

S.00E=06 34,3626n2 12.504879 64162522 28737,57  =8840,80 27072,.152 4947403 6R95,41 27072.282 50,51 178.7 2}93

w
o
£

5,00e~06 34,360244 12.508036 6,19794A 8616,10 3707,69 27072.259 4950482 6R896,29 27072.300 50,54 229.3 2793

w
A
£

5.00€=06 34,358636 12.,508351  6.200676 5686,19 6264,80 27072,296 4952.16 6896.57 27072,301 50,53 279.8 2193

33 0 5.00E-06 34,3%8536 12.508440 6200861 5067,57 6829,07 27072.300 4952.34 6896,64 27072,301 50,57 330.4 2793

3 4 0 5.005=06 34,358546 12.508457 6.200855 4962,85 6893,56 27072,301 4952,3% 6R96,64 270724301 50,57 381.06 2793
CONSTRUCTION OF CLASEST=APPROACH STATE TRANSITION MATRIX

10 0 5.00g=04 34,364016 124493387  6.186248 37.05 488T.46 27074,501 38,00 4800,00 270744500 9.28 3903 402
10 1 5,006=06 34,364915 12.,493387  6.186248 36,74  4B62,01 27074,500 6,16E=06 9¢31E=08 =1e17E=02
1 0 7 S.00E=06 34,364974 12,493388 64186248 37,21 4898,07 270744501 2e34Fu5 =1201E=08 *1+56Em02
1 0 3 5.00E=04 34,356914 12.4933R7 6.186249 36,81 4860,25 27074,501  3,35E=06 =1e2RE~07 44R5E~03

TARGETING T0O CLOSEST=-APSROACH CONDITIONS

10 0 5.00E=06 34,35854& 12,518457 64200855 37,62 4817,95 27074,500 38,00 4800,00 27074500 78,33 496.5 3399
11 0 5.00F-06 34,358546 12,508475 64200862 38,11 4866,91 27074,500 38,00 4800,00 27074.500 78,31 574.9 3398
1 2 0 5.00F=06 34,358547 12508480 £+200865 37.94 4788,42 27074.500 38.00 4800,00 270744500 78.30 653.2 3400
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A typical targeting schedule is used. Thus the initial targeting
and construction of the state transition matrices is done at an

. . -4 . A
integration accuracy level of 5 x 10 ', one iteration is included

at 2.5 x 10-5 to efficiently reduce the error between the first
and third accuracy levels and the final accuracy level of

-6
5 x 10 is the level at which the trajectory is to be ultimately
targeted. No more than five iterations are to be made at this
final (costly) accuracy level. The basic velocity increment used

in the construction of the state transition matrix is 1 x 10-5
km/sec. The targeted trajectory position and velocity will be
printed at intervals of every 100 integration increments and 500
flight days.

The point~to-point conditions (option 1) are generated to
compute the injection conditions. The injection time of 9 hr 25 min
47.639 sec is based on a launch from Cape Kennedy on 7/24/73 at
8 hr 16 min 16 sec (when Cape Kennedy is at a required position)
to an intermediate parking orbit of 100 n. mi. The injection posi~-
tion and zero-iterate velocity corresponding to this injection

time is then computed. The target conditions iCA’ rCA’ tCA
are then converted to equivalent conditions B-T, B+R, and tSI

at the Mars sphere of influence using the point-to-point condi-
tions to approximate the approach asymptote.

The actual targeting procedure, depicted in table 13, may
now be initiated. The integration of the point-to-point condi-
tions at the first accuracy level yields a trajectory intersecting
the Martian sphere of influence; hence no 'outer targeting'' is
required. The approach asymptote of that trajectory is used in
conjunction with the desired closest approach conditions iCA’

Topo and tCA to recompute the auxiliary target conditions BT,
B-R, and tSI' The actual trajectory parameter values differed

from these target values by AB-T = -165 000 km, AB‘R = 115 000 km,
and AtSI = 0.5 day. The state transition matrix computed about

this nominal is then used to predict an improved injection velocity.
This velocity is subsequently the basis for the generation of a

new trajectory, the auxiliary target conditions are recomputed
using the new approach asymptote, and the actual trajectory param-
eter values are calculated. The process is repeated until, after
four iterations, a targeted trajectory is determined at the low
accuracy level with target errors of AB<T = 22 km, AB-R = 38 kn,



Ato. = 0.001 day. The injection velocity used in generating this

I
trajectory is then used at the second integration accuracy level,
the auxiliary target values computed, and the actual trajectory
values recorded. The final state transition matrix generated at
the first accuracy level is then used to predict a corrected in-
jection velocity vector. This velocity is then sent to the third
accuracy level and the entire targeting process is repeated, al-
ways using the same state transition matrix constructed on the
last step at the first accuracy level. The fourth iterate of that
process has errors of AB.T = 10 km, AB-R = 3 km, and AtSI <

0.001 day. 1If option 5 had been chosen, the targeting would be
finished. The resulting trajectory integrated forward to closest
approach would have target errors of Ai,, = 0.98°, Aro, = 18 knm,
and AtCA < 0.001 day. .

Since this is an option 6 targeting problem, the program
now takes the final injection velocity generated at the first ac-
curacy level and integrates this to closest approach, computing
the trajectory parameter values at that point. A state transi-
tion matrix is constructed about this trajectory, now relating
changes in the closest approach target conditions to changes in
the injection velocity. The return is then made to the third
accuracy level where the final injection velocity generated at
that level is integrated to closest approach. The closest-approach
state transition matrix just constructed is now used repeatedly to
target the trajectory. In two iteratioms target errors of only

= ° = .
AtCA 0.06%, ArCA 12 km, and AtCA < 0.001 are attained.

It is interesting to compare the computer times required
by each of the different types of integrations used in this prob-
lem. The data are summarized in table 14. The type 1 integra-
tions are required most often (17 integrations), but they are the
cheapest in computer time. The number of the most time consuming
integrations (type 5) is held to a minimum. The advantage of
using the lower accuracy integrations is obvious. A brute force
numerical differencing technique using only type 5 integrations
would require 1576 sec of integration computer time if but five
iterations were needed for the targeting; the modified approach
using many more iterations requires 655 sec.

145



TABLE 14 .- DISTRIBUTION OF CDC 6500 COMPﬁTER TIME
IN TYPES OF INTEGRATIONS

Computer
Type Final Accuracy Integration | Number of time per Total
boundary steps integrations | integration, | computer
required sec time, sec
1 Sphere of -t
influence {5 x 10 271 17 6.28 106.76
2 Sphere of -5
influence 2.5 x 10 1035 1 23.90 23.90
3 Sphere of v -6
influence [ 5 x 10 2193 5 50.55 252.75
4 Closest -4
approach |5 x 10 402 4 9.28 37.12
5 | Closest -6
approach |5 x 10 3400 3 78.30 234,90

Finally, the results of the f£ifth and sixth targeting
options as applied to this problem may be compared. The option 5
injection conditions were generated in 383 sec of CDC 6500 computer
time (requiring only the first three integration types). An ad-
ditional 272 sec is needed to target to the option 6 conditions.
This great expense in computer time required by the strict closest
approach targeting prompted the inclusion of the relaxed conditions
available under option 5. A summary of the two options is given
in table 15.

TABLE 15.- COMPARISON OF TARGET OPTIONS 5 AND 6

Injection velocity, km/sec Trajectory target values
Option Vx Vy - Vz Lops deg Topo km tCA’ error in days
34.358546 | 12.508457 | 6.200855 37.02 4817.95 0.001
34.358547 | 12.508480 | 6.200865 37 .94 4788.42 0.001

As noted in Chapter IV, there are four distinct trajec~
tories that have identical inclinations, radii, and times at
closest approach for a given mission. The example discussed im-
mediately above is therefore only one of four possible solutions
to the problem. A second posigrade orbit having an inclination
of 38° is specified by setting the target inclination equal to
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-38°; two retrograde orbits are determined by the inclination

values +142° (plus or minus the supplement of the desired inclina-

tion) .

marized in table 16.

targeted at option 5 at an accuracy level of 1.25 x 10_4

The characteristics of this family of solutions are sum-
The results given are from trajectories

the Sun, Earth, and Mars as gravitational bodies.

imations.

using
The trajector-
ies again demonstrate the validity of the target option 5 approx-

TABLE 16.~ FAMILY OF SOLUTIONS TO CLOSEST APPROACH PROBLEM

Input Injection velocity, km/sec Auxiliary conditions Target errors
AR R R R
+38 |34.366621 |12.508799 | 6.187236 | 4957 6900 | 2/13/74 |-0.89 35 |+0.001
-38 |34.362456 }12.508296 ]| 6.193847 7994 |-2872 | 2/13/74 |-0.22 99 |+0.000
+142 134.365151 | 12.511210 | 6.191176 [-7994 | 2873 |2/13/74 |-0.38 | -163 |+0.000
-142' }34.360912 | 12.510700 | 6.197898 |-~4955 |-6897 |2/13/74 |-0.77 | ~122 |+0.000

For targeting in option 3, the above time constraint on t

“‘not rigidly enforced.

3 Targeting to sphere of influence conditions.- A Venus probe

will be
3 and 4.

used to illustrate the differences between térget options
The general problem parameters are given below:

Injection date: 11/3/73;

Target date: 2/20/74 (at sphere of influence);

Gravitational bodies: Sun, Earth (launch planet), Venus
(target planet), Jupiter, Moon;

2.5 x 10,

5.0 x 10'4;

B-T = 3349,
B-R = 1689,
2/20/74.

Final accuracy level:

Intermediate level:

Target conditions:

]

tsr

ST is
This time is used, however, to generate
the injection conditions, which results in the final time being
satisfied approximately. The targeting for both problems begins
with the internally generated point-to-point injection conditions.
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marized in table 17.
B-T and B-R.

to

The progressive targeting under the two options is sum-

‘differential is produced by two effects.

In option 3, 166 sec are required to target
In adding the time constraint in option 4,
the required computer time is increased to 251 sec. This time
First, in option 3 the
construction of the 2 x 2 state transition matrix computed at

each iteration in the first accuracy level requires two integra-
tions, while in option 4 that matrix is 3 x 3 and so necessitates

three integrations.

ing option 4.

TABLE 17.- COMPARISON OF TARGET OPTIONS 3 AND 4

Secondly, more iterations are used in target-

Target option 3 Target option 4
) Computer Computer
BT, km | B'R, km tSI(a) time, BT, km | B-R, km tSI(a) | time,
sec sec
1 399 966 | -99 684} 77.745 6.1 399 966 | -99 684 | 77.745 6.1
E -8 017 10 468 78.114 23.7 213 802 | -119 630 } 78.342 29.9
3 3 971 1 315| 78.068 41.2 55 072 | -29 862 ] 78.453 53.8
25 805 -10 289 1 78.445 77.6
3 942 1 378 {78.499 101.4
-165 080 36 985 78.394 75.3 -164 867 38 5421 78.832 136.1
-18 070 13 508 { 78.164 98.0 43 304 | -23 782 ] 78.300 158.8
3 050 1 8451 78.100 120.7 -12 807 11 030} 78.552 181.5
3 323 1 704 78.099 | 143.3 4 656 8781 78.493 204.2
:: 3 367 1 678 78.099 165.9 2 794 2 019 78.502 227.0
E 3 445 1 638 78.500 | 250.8
. v, v, v, Vs v V.
km/sec km/sec | km/sec km/sec km/sec km/sec
-22.36441 |11.50466 b2.76032 -22.43800 | 11.54728 | 2.85894
- %Last figures of Julian date referenced to 1900. Target date = 27078.500.

Z;component of injection velocity is constrained to this value under option

3 strategy.
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If the final time constraint does not need to be met ex~-
actly, targeting option 3 obviously offers a more efficient solu-
tion than does option 4. However, if the time constraint must be
satisfied, option 4 can be used.

4, Computational procedures for difficult problems.- There
are two procedures added to the basic numerical differencing algo-
rithm to handle certain irregularities. It is possible that, the
point-to-point injection conditions generated by the program will
lead to a trajectory which does not intersect the target planet
sphere of influence. The outer targeting scheme discussed in
Chapter IV is activated automatically when this contingency occurs.
A typical example of outer targeting is depicted in table 18. The
basic mission under investigation is an Earth-Mars probe leaving
on 7/31/73 and arriving at the sphere of influence of Mars on
2/11/74. Additional gravitational bodies included in the n=-body
trajectory generation are the Sun, Moon, and Jupiter. The first

accuracy level for this problem was 1.25 x 10-4. Upon integration
of a set of erroneous injection conditions, the trajectory had a
closest approach to Mars of 2.5 million km and arrived ten days
earlier than desired. An "artificial’ sphere of influence was
constructed about Mars having a radius of 3 million km. "Arti-
ficial" target conditions of B*T = B*R =0 and a biased time
were used as constraints in an option 4 targeting process. In
five iterations injection conditions were generated which led to
a trajectory intersecting the Martian sphere of influence with a
time error of one day. These conditions were then subsequently
targeted to the desired constraints.

The second protective measure is called a bad-step check.
In this procedure each iterate is compared with its predecessor
before being accepted. If the new iterate is considered inferior’
to the old, the velocity correction is reduced by one-fourth and
a new iterate computed. The process is then continued until an
improved iterate is determined. There are two criteria for deem-
ing an iterate inferior. The first occurs when a new iterate
misses the target planet sphere of influence while the preceding
iterate intersected it. The second criterion involves a scalar
measure of the error that is assigned to each iterate. The error
measure is arbitrarily defined as E = |B-T| + |B-R| + 100000

ltSIl or E = 100 !icAl + }rCA‘ + 10000 'tcAl depending on the

target conditions. When the error measure is increased by any
iterate, that iterate is termed inferior. '
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TABLE 18.- DEMONSTRATION OF OUTER TARGETING

Iteration B+T, km B-R, km |Csr> 'ast figures of
Julian date

Outer targeting
loop:

0 1 033 217 {-1 906 363 72.707

1 997 753 -41 205 88.591

2 423 538 |-1 131 272 77.353

3 100 219 257 898 85.825

4 ~20 417 125 533 83.896

5 1 079 2 955 83.047
Outer targeting
conditions v 0 0 83.015
Return to regular
targeting:

0 10 402 6 630 91.378
Regular target L
conditions - 8 000 1 000 90.125

The need for a bad~step check is demonstrated in the ex~
ample illustrated in table 19. The mission constraints included
departure from Earth on 3/9/72 and arrival at the sphere of in-
fluence of Venus on 9/5/72. The gravitational effects of the Sun,
Earth, Venus, Jupiter, and the Moon were to be considered in the
integration. Table 19 indicates the outer targeting (at the 5.0 x
10 4 accuracy level) for the problem. The trajectory is obviously
in an extremely nonlinear region in terms of the targeting pro-
cedure, and in fact is the worst case encountered to date. Each
of the first two corrections lead to trajectories missing the
artificial sphere of influence (having a radius of 1 065 496 km).
Subsequently three sets of velocity corrections lead to target
conditions that increase the error measure assigned to the pre-
vious iterate. This example emphasizes the necessity for in-
cluding the bad-step check; if it were not present the targeting
would fail. It furthermore points up the advantage of performing

the early targeting at a low accuracy level. 1In spite of the
_ pathological nature of this problem, the outer targeting required

only 220 sec of computer time to generate injection conditions



that intersected the target planet sphere of influence with
BT = ~6173, B-R = -3706 and an error in time of 0.008 days.
The entire problem was targeted (to errors of B-T = 1000, B-‘R =

200, top = 0.004) at a final accuracy level of 5.0 x 10-6 in

416 sec including the 220 sec spent in outer targeting.

TABLE 19.- DEMONSTRATION OF BAD~STEP CHECK

Iterate Vx’ Vy’ Vz’ BT, B-R, . Error
km/sec km/sec km/sec km km SI measure
0 1.575340 :}-20.817502 | 1.571208 | ~765 199 | ~-469 501 | 43.933 | 1 281 800
& 1.412716 [-20.606402 |1.128612 | (Missed artificial sphere of influence)
1 1.534684 |-20.764727 | 1.460559 | -682 864 | -415 132 ] 44.024 11 135 996
a 1.397888 |-20.597383 | 1.123011 | (Missed artificial sphere of influence)
2 1.500485 }-20.722891 11.376172 } -576 213 | -345 480 | 44.134 948 693
3 1.424208 |-20.636389 | 1.215709 | -224 998 | -130 729 | 44.702 385 527
b4 1.497700 {-20.726740 | 1.434823 | -412 104 | -190 780 | 44.182 625 084
1.442581 |-20.658977 | 1.270487 | ~-193 589 | ~110 660 | 44.637 327 549
b5 1.504156 |-20.736292 } 1.454002 §|-282 006 | ~130 178 | 44.227 429 884
5 1.457975 }|-20.678305 | 1.316366 | ~-160 072 -91 281 | 44.592 270 153
b6 1.470842 [-20.694737 |1.355106 | ~132 022 -74 950 | 44.556 222 172
1.513802 |-20.750422 | 1.484726 | -137 682 -63 263 | 44.319 209,445
8 1.523054 }-20.763977 | 1.513422 -18 519 -11 118 | 44.412 30 437
Target conditions (outer targeting): 0 01 44.404

aIterate misses artificial sphere of influence. Velocity correction is
reduced by one-quarter to generate new iterate.

Iterate increases error of previous iterate. Velocity correction is reduced
by one~quarter to generate new iterate.
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5. Other applications.- The targeting program is applicable
to many other problems than just the simple probe problems dis-
cussed above. One application handled easily by the program in-
volved midcourse corrections. A nominal trajectory was first

targeted at the 2.5 x 10 o accuracy level departing from Earth

on 7/24/73 and arriving at Mars on 2/7/74. The sun was the only
other gravitational body included in the integration. It was
desired to analyze the effect of using midcourse corrections to
delay the final arrival at Mars by five days. The times for the
corrections were set at five, 25, and 50 days after injection.
The position and velocity of the nominal trajectory were recorded
at these times and read into the targeting program as injection

conditions. The target conditions were identical for each of the
three problems (ITARG = 5, fop = 38°, Top = 4800 km, tCA =
2/12/74). The differences between these targeted velocities and

the velocities at the respective times along the original trajec~
tory then constituted the size of the midcourse correction needed
at each candidate time of midcourse correction. The results of

this study are summarized in table 20. As can be seen the minimum
correction occurs at the third candidate time.

TABLE 20.~ ANALYSIS OF MINIMUM VELOCITY MIDCOURSE CORRECTION

Trajectory vx’ Vy’ Vz’ B-T, ]B-R, tSI AV
km/sec km/sec |km/sec | km km
}Nominal at 5 days 26.51898 |119.62386 |1.2332 4705 | 6820 |63.378
Targeted correction |26.49243 119.60173 ]1.36855}14876 16901 |68.315 |0.13970
| Nominal at 25 days 19.28783 |26.21346 |1.11532]4705 [ 6820 }63.378
Targeted correction |19.25626 |26.19625 11.20774]4892 |6931 |68.301 |0.09917
Nominal at 50 days 8.52058 } 30.02813 8434414705 16820 |63.378
Targeted correction 8.47260 |30.01004 .91740)4889 | 6954 |68.290 |0.08999
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A second application of the targeting program has been
in the extremely sensitive problem of generating swingby trajec-
tories. A nominal set of target conditions based on a patched
conic trajectory originating from Earth and passing near Jupiter,

Saturn, and Pluto was used as a profile for the run. The data
of that patched conic are summarized below:
Launch date: 8/27/77;
Arrival at Jupiter: + 509 days, B-T = 715 906, B:R =
Arrival at Saturn: + 1087 days, B-T = 139 232, B-T =

Arrival at Pluto: + 3021 days.

26 876;
594 928;



The integration model for the trajectory used an accuracy level

of 1.25 x 10 4 with the Sun, Earth, Jupiter, Saturn, and Pluto
as gravitational bodies. The trajectory was first targeted to
the given patched conic conditions at Jupiter. The injection
conditions thus generated yield a trajectory missing the sphere
of influence of Saturn. Four iterations of outer targeting
yielded a trajectory intersecting the sphere of influence of
Saturn. Four iterations of outer targeting yielded a trajectory
intersecting the sphere of influence of Saturn. However, six
iterations were then required to target to the given target con-
ditions at Saturn. These new injection conditions generate a
trajectory that misses Pluto by 121 million km. The entire process
could be repeated to target to given conditions at Pluto if de-

sired. The targeting for this swingby mission is summarized in
table 21.

Experience has indicated that these swingby trajectories
are extremely sensitive problems. Selection of an appropriate
velocity increment to use in constructing the state transition
matrix is of crucial importance. Undoubtedly major revisions
should be made in the targeting scheme before it can be used ef-
ficiently for targeting swingby trajectories.

TABLE 21.~- TARGETING OF SWINGBY MISSION

T £ ini . .
Computer arge ani;;;Z: velocity, Target conditions
Iterations time
required required, v v v B-T B-R t
sec x ¥ z km’ km’ st

Earth-Jupiter 6 104 19.959364 | 40.225501 | 0.630516 | 715 875 26 876 112/7/78
Farth~Saturn
(outer
targeting) 4 405 20.082143 ] 40.,037109 ] 0.689713 |[-302 127 |-203 541 |7/27/80
Earth-Saturn
(inner
targeting) 6 627 20.079305 | 40.041451 | 0.688398 146 456 595 915 |7/27/80
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€. Error Analysis Mode

This section demonstrates the uses of the error analysis
mode, Many actual runs have been made and the results are in-
dicative of the kind of information that can be obtained from
the error analysis mode of STEAP, A basic Mars-Viking run will
be analyzed first in detail, Several additional runs will be
presented to show how key trajectory parameters vary under dif-
fering assumptions, The last set of data contains a midcourse
correction schedule analysis for a Venus mission from the pro-
posed Planetary Explorer launch window,

1. Base Mars-Viking run.- Table 22 presents the input used
for an example run of the error analysis mode. The nominal traje
tory was chosen from the Mars-Viking launch window and was tar-
geted, to satisfy mission constraints, by the targeting mode of
STEAP. The launch date for the base run was July 24, 1973, and
the time of closest approach to Mars was February 16, 1974, The
injection conditions given in the table are consistent with a
launch profile that assumes a Cape Kennedy launch and subsequent
injection from a nominal, circular parking orbit about the Earth,

The targeting conditions in the Mars impact parameter plane

were given by B.T = 4938.86 km, B+:R = 7179.34 km, and tSI =

February 13, 19 hr, 14 min, 33,885 seec, 1974, Five bodies were
used in the trajectory computation and the integration accuracy
level corresponded to a fixed true anomaly increment of 7,696
mrad, No dynamic noise was included in the base run and state
transition matrices were computed from the analytical patched
conic formulas,

The measurement schedule used for the analysig is given in
detail in table 22, All range measurements were assumed to have

2
a variance of 9 m (lo = 3 m) and all range rate measurements

had variances of 9 mmz/sec2 (lo = 3 mm/sec)., Three guidance
corrections, all using the 3-variable B-plane policy, were made
at 5, 30, and 197 days after injection, Execution error vari-
ances at the times of midcourse correction are included in the
table and they correspond to lg errors of 0,002 for the pro-
portionality error, 2 cm/sec for the resolution error, and 7.1
mrad for each of the pointing errors,



TABLE 22.- CONDITIONS FOR BASE ERROR ANALYSIS RUN

Injection date: July 24, 9 hr, 25 min, 47.639 sec, 1973
Closest approach date: Feb. 16, 0 hr, 1 min, 49.377 sec, 1974

Injection conditions: (geocentric ecliptic coordinates)

X = ~1090.0529 km X = 9.401527 km/sec
Y = ~6550.0511 km é = -2.876404 km/sec
Z = 75.6015 km i = 6.200795 km/sec
T, = 6640,5648 km Vg = 11.623781 km/sec
Mars sphere of influence conditions:
B = 8714.08 km B+ R=7179.34 km
B+ T = 4938,.86 km tor = Feb. 13, 19 hr, 14 min, 33.885 sec, 1974

Ephemeris included Earth, Mars, Sun, Jupiter, Moon

Accuracy level: 5 x 10-% True anomaly: 7.696 mrad
No dynamic noise

Star transition matrices from patched conic

Measurement schedule ~ Goldstone measured range and range rate 5 times at 0.2, 1.2, 2.2, 3.2, 4.2
Goldstone measured range rate 19 times at 5.3, 9.3, 13.3, 17.3, 21.3, 25.3,
29.3, 34.1, 64.1, 94.1, 124.1, 154.1, 184.1, 187.3, 190.3, 193.3, 196.3,

199.3, 202.3

Madrid measured range and range rate 12 times at 0.6, 1.6, 2.6, 3.6, 4.6,
6.7, 10,7, 14.7, 18,7, 22.7, 26.7, 30.7

Madrid measured range rate 11 times at 44.5, 74.5, 104.5, 134.5, 164.5, 194.5,
203.5, 204.5, 205.5, 206.5, 207.5

Canberra measured range and range rate 12 times at 0.9, 1.9, 2.9, 3.9, 4.9,
8.0, 12.0, 16.0, 20.0, 24,0, 28.0, 32.0

Canberra measured range rate 6 times at 54.8, 84.8, 114.8, 144.8, 174.8,
204.8

Total of 65 measurement times

Measurement accuracles: 02 = 9 m? for all ranges

D
0% = 9 mm?/sec? for all range rates
D
Injection covariance diagonal: 0% = 1 km® for all positions
U% = 9 m?/sec? for all velocities

Guidance corrections at 5, 30, 197 days; three variable B-plane policy

Execution errors: o2 = 4 x 10-6 02 = 4 cm?/sec?
pro res

2 L s2 o -5 2
GSa GGB 5 x 10 rad
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Recall that there are three major outputs of the error
analysis mode, The first of these is the navigation uncertainty
covariance matrix at selected epochs along the orbit, A.second
is target condition variations about the nominal, which indicate
how closely the corrected trajectory is likely to meet the
specified target conditions,., The third significant output is
related to the likely size of the midcourse corrections and is
important for fuel loading purposes.

Table 23 presents a detailed tabulation of the diagonal ele-
ments of the state vector associated covariance matrices for the
base run, The symbols + and - in the trajectory time column
indicate values before and after processing the measurement made
at the specified time. The measurement kind column refers to the
type of measurement being processed; thus at 0,9 days after in-
jection a measurement of range and range rate (D3 and 53) was

taken from Canberra., The initial position variances were all 1
km2 and the initial velocity variances, also uncorrelated, were
assumed to be 9 mz/;ecz. The symbols Gl’ G2, and G3 in the

measurement number column indicate the times of the three guidance
corrections,

The position uncertainties displayed in the table, two of
which are plotted in standard deviation form (3¢) in figure 11,
are fairly typical of similar runs, Due to the sensitivity of
the outgoing hyperbola, which produces large state transition
matrices, the position uncertainty variances increase initially,
After one day and three measurements of range and range rate,
the position navigation uncertainties have approximately re-
turned to their initial values. Subsequent tracking and data
processing reduces the position errors to about 0.75 km (30)
after three days and the variances stay more or less the same
until the first guidance correction five days after injection,
It is interesting to note from table 23 the affect of each in-
dividual measurement on the processed covariance matrices, The
sixth measurement, for example, which was a range and range rate

measurement from Canberra, only reduced 02 from 0.531 to 0,423,

Z
By contrast, the seventh measurement, range and range rate from
Goldstone, reduced the same quantity by more than one order of
magnitude, The geometry of the tracking station-trajectory rela-
tionship plus other factors related to previous measurements
doubtless explain why one measurement reduces uncertainties more
than another,



TABLE 23.- NAVIGATION UNCERTAINTIES FOR BASE ERROR ANALYSIS RUN

Data Position uncertainties, km? Velocity uncertainties, w®/sec?
tine, days ] Noo| Kind % % % % g %
0 0} ----1] 1.000 1.000 1.000 9.000 9,000 9.000
0.27 0 1.035 x 10* | 2.410 x 10% | 4.885 x 10° | 5.115 x 101 | 4.199 2,177 x 10*
0.2% 1 Dl,ﬁl 2.130 x 102 | 1.626 x 10% | 1.856 x 10® | 7.575 x 10-1| 3.504 5.639 x 10-1
0.6 1 1.804 x 10% | 1.003 x 10 [ 1.409 x 10° | 5.967 x 10-*] 2.755 4.420 x 1071
0.6% 2 | p,,Dy| 2.014 x 10% | 2.753 x 101 | 4.618 1,063 x 10-2} 6.948 x 1073 4.943 x 10-3
0.9" 2 5.055 x 10% | 5.415 x 10 ] 1.522 x 10* | 1.022 x 10~®] 6.554 x 10~3] 4.837 x 1073
0.9% 3 Ds,ﬁa 1.586 8.322 x 10% | 3.220 3.631 x 10-*| 2.113 x 10~*| 7.289 % 10~*
1.27 3 2.884 1.562 6.025 3.551 x 10~} 2.073 x 107} 7,138 x 10-*
1.2% 4 | py,D,| 6.380 x 1072 9.757 x 10*] 7.406 x 1072 | 6.743 x 1075 | 1,331 x 10°*| 1,846 x 107*
1.6 4 2.144 x 107%} 1.828 1.667 6.706 x 105 1,309 x 10~*| 1.822 x 10~
1.6% 5 Dz,ﬁz 1.533 x 10-1 ] 7.853 x 10~2| 2.556 x 10~%{ 6.421 x 105 2.617 x 1075} 7.670 x 1075
1.97 5 3.499 x 1072 | 1,495 x 10~*1{ 5.310 x 10=* | 6.39%4 x 105 2.608 x 1075 | 7.633 x 1075
1.9% 6 95,63 2,399 x 10711 1.031 x 107 | 4.227 x 10"*] 5.024 x 107 | 2,038 x 10"%| 6.248 x 1075
2.2 6 4.492 x 1071 | 1.784 x 1071 [ 7,272 x 10~ | 5.005 x 10-5] 2,032 x 1075 6.221 x 10
2.2t 7 | b,p, | 4624 x 1072 9.503 x 1072| 5.225 x 107%| 3,252 x 10-®| 3.451 x 10| 3.410 x 10~°
2.6~ 7 7.356 % 10721 1.357 x 107§ 8.216 x 10-2] 3.236 x 10-%| 3.428 x 10~} 3,394 x 106
2.6% 8 Dg,ﬁz 5.965 x 1072 8,581 x 1072 | 7,701 x 10-2] 2.600 x 10~5| 1.982 x 10~5| 3,382 x 107®
2.9 9 | Dy,Dy} 6.695 x 1072} 9.505 x 1072} 1,005 x 107> [ 2.398 % 10-6 | 1.838 x 1076 3,297 x 10-®
3.2% 10 | Dp,,D,|5.931 x 1072] 1,143 x 107* | 6.436 x 1072 | 1,305 x 10~ | 1.608 x 10-5 | 1,453 x 10~
3.6 11 | Dg,Do| 6.854 % 1072 [ 1.106 % 10-2 ] 8.265 x 1072 | 1,124 x 1075 | 1.166 x 1075 1.443 x 107
3.9% 12 | Da,Dy | 7.242 x 1072} 1.196 x 1071} 9,802 x 1072 ] 1,041 x 1075 ] 1.102 x 1078 | 1.415 x 10-®
4.2% 13 | Dy,D; | 7.276 x 1072 1.383 x 1071 [ 7,722 x 1072 | 7.847 x 10~7| 1.072 x 10~% | 8.780 x 107
467 14 | pg,Do 8.047 x 1072 ) 1,365 x 107% | 9,274 x 10-2] 7.006 x 1077 | 8.572 x 107 ) 8.698 x 1077
4.9% 15 | D,,Dy] 8.336 x 1072 1.457 x 10-1 ] 1.051 x 10~2 [ 6.531 x 10~7 8.189 x 1077 | 8.546 x 1077
5.0 I — 8.732 x 1072 1,516 x 1071 | 1.102 x 10"* | 6.533 x 10~7 | 8.193 x 10-7 | 8.544 x 10-7
5.0t 1.311 x 1073 3,727 x 1073 | 3.124 x 1073
5.37 15 | B, 9.744 % 107 { 2.656 2,210 1.311 x 102} 3,727 x 10737} 3,124 x 10-3
5.3 16 4.788 x 1071 11,738 1,239 5.695 x 10~* | 2.349 x 1077 | 1.669 x 10-3
6.7 16 |Dp,Dp}1.243 x 101 |5.089 x 10 |3.615 x 10* |5.706 x 10~* | 2.352 x 107 | 1,668 x 107>
6.7% 17 | Dp,Dp{ 1.203 x 10* | 4.386 x 101 ]3.211 x 10% |5.521 x 10~* 2,028 x 1077 | 1,481 x 1077
8.0" 17 | Ds,Ds | 3.727 x 10 | 1.363 x 102 | 9,968 x 101 |5.545 x 10~ | 2,033 x 10-% | 1.479 x 10~
.ot 18 2.942 x 101 | 9,008 x 10 |1.650 x 102 |4.393 x 10-% | 1.338 x 10-3 | 2.471 x 10-*
9.3+ 19 |b,,D, |5.553 x 10t |1.699 x 102 |3.252 x 10 |4.062 x 10* | 1,234 x 1077 | 2.364 x 10™*
10.7% 20 |D,,Dp | 3.232 1,917 x 10 [3.227 x 101 }1.295 x 10~ | 7.452 % 10° | 1,332 x 107
12.0" 21 |bs,D5 | 4.079 1.922 x 101 | 1,558 x 10% |1.098 x 10~° | 4.939 % 10-5 | 4.222 x 105
13.3% 22 |b, 5.685 2.664 x 10> 12.183 x 10 ]1.111 x 1075 | 4.948 x 1075 [ 4,195 x 105
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TABLE 23, - NAVIGATION UNCERTAINTIES FOR BASE ERROR ANALYSIS RUN ~ Concluded

Data Position uncertainties, km?® Velocity uncertainties, m2/sec?
SO e I
14.7% 23 | D,,D5 16.571 1.995 x 10} | 1.726 x 101 |9.869 x 107° | 2.872 x 10-5 | 2.450 x 10-5
16.0F 24 | Ds,D5 | 1.779 1.511 x 10% |2.202 x 10 |2.318 % 10-% | 1,713 x 10-® | 2.414 x 105
20.0" 27 |Ds,p5 | 9.600 x 1071 | 2.608 1.304 x 101 }6.712 x 10-7 | 1.695 x 10-6 | 7.609 x 10~®
24.0% 30 |Ds,Ds |9.385 x 107 [1.659 1.209 x 10t |3.817 x 10-7 | 6.418 x 10~7 | 4.294 x 10-5
28.0% 33 |Ds,bs |8.737 x 10-1 | 1.529 1.167 x 101 |2.264 x 10-7 | 3.839 x 10-7 [2.743 x 1076
29.3% 3 |D, 9.733 x 107 {1.701 1.295 % 101 }2.249 x 10°7 | 3,771 x 10-7 | 2.696 x 10-5
30.07 Go |---- {1.029 1.797 1.368 x 101 |2.242 x 10-7 | 3.732 x 10-7 {2.670 x 10-®
30.0% 2,747 x 107* | 4.450 x 10~5 |8.468 x 1075
30.7% 35 |Dn,D, |1.086 1.89% 1.441 % 10 | 4.746 = 10-7 | 6,183 x 10~7 13,337 x 1076
32.0% 36 |Ds,Ds |1.109 1.698 1.386 x 101 {4,240 x 10-7 | 5,104 x 10-7 |2.873 x 10-6
34,1 37 b, 1.29 1.970 1.597 x 101 | 4.255 x 10~7 | 4,997 x 10-7 |2.798 x 106
64,1% 40 |b 7.584 8.034 5.489 x 101 [6.877 x 10-7 | 3.045 x 10-7 |1.426 x 108
94.1% 43 |, 1.891 % 101 1,501 x 101 [6.561 x 101 {9.946 x 10-7 | 1.864 x 10-7 |3.177 x 10-7
124.1% 46 D, 3.179 x 101 12.041 x 10% 14.370 x 10% }9.274 x 1077 | 2.852 x 1077 |7.270 x 1078
154.1% 49 [D, 4.762 x 10% [2.471 x 101 [2.381 x 10! |6.620 x 10~7 | 5,388 x 10°7 |9.391 x 10-8
184.1% 52 |b; 6.474 x 101 [3.106 x 101 [1.330 x 101 |3.628 x 10-7 | 8.445 x 10~7 }1.160 x 107
194.5" 56 |D, 6.687 x 101 12,494 x 101 [9.694 2,161 x 107 {7.347 x 10-7 ]9.824 x 1078
197,07 G |---- |6.764 x 101 [2.422 x 101 [9.231 1,916 % 10=7 } 7,226 x 1077 [9.543 x 1078
197.0" 2,495 x 10™ 18,849 x 1075 11.206 x 107
199.3% 58 |Db, 7.352 x 101 [2.897 x 10> |1.329 x 101 |1.502 x 10™* |8.802 x 10-5 |9.572 x 10-5
202.3% 59 |, 9.893 x 101 {4,504 x 101 }2.998 x 101 |1.496 x 10~* |8.531 x 10-5 [9.551 x 10-5
2203.57 59 |D, 1.147 x 102 {5.488 x 101 |[4.024 x 10* |1.495 x 10~* }8.552 x 10~5 [9.541 x 105
203.5% 60 1.146 x 102 [5.322 x 101 [3.997 x 10% [1.489 x 10™* [8.185 x 105 [9.478 x 10-5
b04.5" 60 |D, 1.301 x 102 16.238 x 101 |5.000 x 101 }1.487 x 107* |8.204 x 10~ 19.467 x 10~5
204.5% 61 1.292 x 102 |5.997 x 10t {4.927 x 10 |1.463 x 10™* }7.753 x 105 [9.317 x 10-5
€205.5~ 62 Dy 1.459 x 102 16.703 x 10% ]5.940 x 101 |1.313 x 10-* |6.948 x 10~5 [8.637 x 10-5
205.5% 63 1.457 x 102 |6.095 x 10t |5.505 x 107 |1.285 x 107* |6.421 x 10~5 18.231 x 10-5
4206.5" 63 Dy 1.619 % 102 [6.952 x 101 |6.362 x 10} |6.377 x 10- | 8.29% x 10-3 |2.630 x 10-3
206.5% 64 1.078 x 102 }5.073 x 103 |4.567 x 10* |2.393 x 10~3 [ 1.480 x 103 }1.452 x 10°3
€207.5" 64 |Dp 6.081 x 10* 12.532 x 10* |4.378 x 10* [9.772 4.128 6.736
207.5% 65 4,577 x 10% [2.447 x 10* |&.214 x 10% |7.422 4.040 6.563
Distance from Mars at 203.5 = 793 .000 km.
bpistance from Mars at 204.5 = 543 000 km.
®Distance from Mars at 205.5'= 291 000 km.
dpigtance from Mars at 206.5 = 33 000 km.
©Distance from Mars at 207.5 = 236 000 km,
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Figure 11.- Processed Navigation Uncertainties from Base Error Analysis Run
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At the time of the first guidance correction Gl)’ the 3o

position uncertainties are approximately 0.87 km, 1.17 km, and
0,98 km, respectively, Although the execution error covariance
matrix Q adds immediately only to the velocity uncertainties,
the position errors increase briefly while the execution errors
are being filtered by the algorithm. After processing the range
and range rate measurements from Goldstone 9.3 days after in-
jection, the 30 position uncertainties have reached magnitudes
of 22,5 km, 39 kn, and 16.8 km, The X and Y mnavigation
errors then drop rapidly and level off around a 3¢ value of

3 km prior to the second midcourse correction, The uncertainty
in the Z component of position is not significantly reduced
during this same period and is still 11,1 km (3¢0) at the time
of the second correction., As was mentioned earlier, tracking
station-orbit geometry probably accounts for some uncertainties
being reduced more than others by the tracking.

After the second guidance correction, several factors con-
tribute to the rising navigation uncertainties, First, execution
errors are made at the second correction and are naturally quickly
reflected in the navigation uncertainty covariance matrix. Second,
tracking measurements are taken at wider intervals and with less
frequency, Third, the most important, only range rate measure-
ments are made after the first two observations following the
second midcourse correction.

The pattern displayed by the position variances between the

second and third midcourse corrections might be called barely

controlled. Each measurement more or less counteracts the uncer-
tainty increase between observations, At the time of the third
midcourse correction, which is roughly ten days before closest
approach to Mars, the position uncertainties are (3¢) 24,7 km,
14,6 km, and 9.1 km, After the final correction in the example
error analysis run, as the hypothetical spacecraft nears Mars,
measurements are taken more frequently, The position uncertain-
ties first increase due to the execution errors from the third
correction, However, as periapsis is neared, the position un-
certainties decrease, although not markedly, because the influence
of the third correction execution errors has not been totally
eliminated, The position uncertainties at periapsis are shown

in table 24 and their 30 levels of 17,504, 18,836, and 13,190
km are less than those at 206,5 days shown on table 23.



TABLE 24.- NAVIGATION UNCERTAINTIES AT CLOSEST APPROACH FOR BASE RUN
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(in areocentric coordinates)
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Covariance matrix information
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After Mars periapsis passage, the position uncertainties rise
at a fantastic rate, This phenomenon was noticed in all the test
rung, Coming into the target planet on a hyperbola, the position
uncertainties decreased as the trajectory came closer and closer
to periapsis, Physically this means that the target planet is
influencing families of neighboring trajectories in much the same
way and, to continue the analogy, is pulling them together during
the approach period, Conversely, after periapsis passage, families
of neighboring trajectories are scattered wildly and slight un-~
certainties at closest approach become quickly magnified, One
can immediately conjecture that a similar analysis of a multi-
planet swingby mission would demonstrate a considerable loss of
navigation accuracy after passing the intermediate planet,

Table 23 also contains a chart of the velocity navigation
uncertainties for the same example run, Figure 12 shows the gen-
eral behavior of the X velocity uncertainties throughout the
example mission, Unlike the position uncertainties, the veloc-
tiy errors show no initial precipitous rise on the outgoing Earth
hyperbola, After one complete cycle of measurements, at 0,9 days
after injection, the initial velocity errors of 9 m/sec (30) in
all components have been reduced by the navigation process to
0,057, 0,043, 0,069 m/sec, again using 30 numbers., Subsequent
measurements before the first midcourse correction regularly re-
duce the velocity uncertainties, which are not growing measurably
between observations, until, at the time of the first correction,
their 30 levels are 2,43, 2,71, and 2,76 mm/sec, The spacecraft
velocities for the hypothetical example run are very well known
at the time of the first correction,

A midcourse correction introduces a discontinuity into the
navigation velocity uncertainties, Impulsive velocity maneuvers
are assumed by the process, and thus the execution error matrix
Q discussed earlier is added to the earlier velocity uncertain-
ties at the specific time, Primarily because of the execution
errors, the 30 velocity uncertainties after the first midcourse
correction have risen to 108, 186, and 168 mm/sec, Figure 12
shows the discontinuities in the velocity uncertainties at the
times of midcourse correction,
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Figure 12,- Navigation Uncertainties from Base Error Analysis Run
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Again the tracking-navigation process reduces the velocity
uncertainties in a regular fashion before the second assumed
midcourse correction 30 days after injection, However, just
as the Z component of position uncertainty failed to come down
as much as the other position uncertainties (probably because of
the geometrical relationship between the tracking stations and |
the trajectory over the interval between corrections), so the Z
velocity uncertainty is not as small as the other two at the time
of the second midcourse correction, Before the second correc-
tion, the 30 velocity errors are given by 1,38, 1,83, and 15,6
mm/ sec,

Over the long heliocentric phase of the trajectory, before
the final midcourse correction, the navigation algorithm filters
out the second maneuver execution errors despite the infrequency
of the measurements, At the time of the third correction, the
30 levels of velocity uncertainty are down to 1,32, 2,55, and
0,93 mm/sec, Notice that now the Z component is best known,
and that the error in the ¥ component is the largest of the
three., The execution errors at the third correction are never
reduced considerably during the approach to Mars, This is because
of the rapidly increasing velocity of the vehicle as it draws near
to the target planet and the concomitant magnification, in terms
of errors, of the velocity uncertainties, At closest approach
(see table 24), the velocity uncertainties have risen to 3¢
levels of 9,587, 7.625, and 8.846 m/sec, far above their values
during most of the trajectory.

It should be stressed again that all test runs demonstrated
the same navigation uncertainty behavior upon passing close to
the target planet., During the approach, the position uncertain-
ties decreased and the velocity uncertainties increased rapidly
as the planet speeded up the incoming vehicle, Just after peri-
apsis, the position uncertainties were considerably magnified
and the velocity errors diminished slowly with the processing of
the tracking data, From the point of view of an assumed orbit
insertion maneuver at periapsis, it is apparent that the position
of the spacecraft at the time of insertion should be well known,
but that considerable errors may be present in the estimated veloc-
ity.



Table 24 also presents the closest approach conditions for
the nominal trajectory of the example run and several of the key
correlation coefficients relating uncertainties in the various
elements of the state vector, The periapsis height above the
assumed spherical Martian surface was 1610,47 km, Three of the
correlation coefficients were large enough to create some con-
cern about observability, However, experience indicates that
until one of the p values reaches at least 0,999 the estima-
tion algorithm can operate without undue difficulty,

Table 25 gives the AV information for the base error analy-
$is run, The most likely magnitude of the first correction,
whose computation method was discussed in an earlier section of
this analytic manual, is 8,638 m/sec. The standard deviation o.
about this mean value was calculated as 6.287 m/sec, The under-
lying probability distribution is not normal or Gaussian, because
clearly no negative values can be permitted and the mean minus
20 would give a negative midcourse velocity, A more detailed
description of the probabilistic interpretation of these two num=-
bers is given by Hoffman and Young in reference 12,

Recall that the most likely magnitude for the midcourse cor-
rections are computed from navigation uncertainties after the
last correction, The state transition matrices are computed be-
tween corrections, as well as the guidance matrix [ that is
computed from the specified guidance law, What the value 8.638
m/sec represents, therefore, is a most likely correction that
would result if the set of all trajectories whose errors at in-
jection are given by Po were actually flown in a Monte Carlo
sense,

Given that a correction of some magnitude takes place, one
can determine from the same information (the injection covariance,
the state transition matrix from injection to the first midcourse,
and the guidance matrix) the most likely direction of the correc-
tion., The effective most likely correction, given by '"E [aV]",
is given in table 25 and is used to compute the execution error
matrix @. Notice that for the first correction the most likely
direction is in the XZ plane, but the maximum diagonal of the
execution error covariance matrix is the term 322 associated

"with uncertainties in ¥, This is explained by the execution
error model and the error variances used for the particular run,
For the specified quantities, the pointing errors are actually
more severe than the total of the proportionality and resolution
errors. For small angular pointing errors, the execution error
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TABLE 25.- GUIDANCE CORRECTION INFORMATION FOR BASE ERROR
ANALYSIS RUN

Correction At 5 days At 30 days At 197 days
no.
Data 1 2 3
E[|aV]|], m/sec | 8.638 0.079 0.744
Iy m/eec 6.287 0.037 | 0.562
"E[AV]", m/sec | X = 7.716 X= 0.066 |X= 0.572
Y = -0.342 ¥ = 0.026 ¥ = -0.298
Z=-3.866 Z = -0.036 Z = 0.370
411, m2/sec? 1.311 x 1073 | 2.745 x 10-%| 2.492 x .10-%
825, m2/sec? 3,725 x 10°3| 4.413 x 1075| 8.776 x 10-5
U35, m?/sec? 3.123 x 10~3| 8.201 x 10~5| 1.205 x 10-%
Ny 6.184 x 108 | 3.358 x 10°® | 5,286 x 10°
n1s -8.658 x 108 | -9.124 x 105 | -6.544 x 105
‘nie 6.051 x 103 | -1.248 x 10% | 1.299 x 102
N2y -2.478 x 107 | -1.630 x 107 | -3.142 x 10°
n2s -6.089 x 10° | -9.002 x 105 [ -2.543 x 105
n26 -4.695 x 108 | -6.329 x 10° | -7.351 x 10°
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due to pointing is essentially orthogonal to the direction of the
correction, Thus, the assumption of the first effective midcourse
given by "E [AV]" and the specified variances given for the ex-
ecution errors leads to a maximum execution uncertainty in a
direction orthogonal to the maneuver, The 30 wvalues for the
execution error at the first correction are given by 30& = 108,

30& = 186, and 302 = 168 mm/sec. These quantities are subse-~

quently added to the navigation uncertainty covariance matrix for
further propagation,

The bottom of table 25 gives the more important terms of the
variation matrix 1, which relates uncertainties in the impact
parameter plane targeting conditions to uncertainties in the
state vector at the time of the midcourse correction, At five

days, the largest term is ﬁ24 = -2,478 x 107, which means that

a 1 m/sec error in X at the time of the first correction maps
into an error of 24,780 km in B-R when the Martian sphere of

6
Mg = -8.658 x 107,
a 1 m/sec error in ? at the first correction time maps into an
error of 8658 km in B.T at the target, The size of these
sensitivities along the trajectory should be important for de-
termining an optimum midcourse correction schedule, They are
used, as would be expected, in determining target condition un-
certainties after midcourse corrections,

influence is encountered, Similarly, since

The expected value of the second correction magnitude is 79
mm/sec, The standard deviation o of this magnitude is 37 mm/
sec, It should be stressed that these statistical computations
for the second (and subsequent) midcourse corrections are condi-.
tioned on the preceding maneuvers, The execution error matrix
for the first maneuver, which is the prime contributor in de-
termining the most likely magnitude of the second correction, is
based on the first effective midcourse maneuver 'E EAVl]". Thus,

the magnitudes for the second and third corrections should be
interpreted as conditional distributions, given that preceding cor-
rections are described by the effective correction vectors

"E [AV]". A determination of the statistical properties of sub-
sequent midcourse maneuvers independent of any assumptions about
corrections would require the simulation mode and a Monte Carlo

set of runs;
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Both the second and third maneuvers in the example run were
relatively small, For small AV's, the most significant execu-
tion error, at least for the execution error statistics defined
in the example run, is the resolution error, Since this error
is along the direction of the commanded AV, the @ terms
(which are the diagonals of the execution error matrix) for the
last two corrections show that the maximum execution uncertainty
is along the vector of the effective midcourse correction "E(AV)"
Since the proportionality and pointing errors, both of which are
a function of the magnitude of the maneuver, are very small for
each of the last two corrections, there is not a significant dif-
ference between the sizes of the last two execution errors,

Table 26 gives the target condition uncertainties for the base
error analysis run, Recall that these numbers answer the mission
analysis question, "how close will the trajectory satisfy the
nominal target conditions?" The first column displays the pro-
pagation of the injection covariance into the impact parameter
plane., The initial target condition uncertainties, based on the

injection errors, are 3GB T = 163 463 km and BGB.R = 778 078 km,

The next two rows define the major and minor axes of the 3¢
ellipse in the B-plane, The last row defines the orientation of
the major axis of the 30 ellipse in the B-plane, where the
angle is measured counterclockwise from the T-axis,

The numbers given in table 26 are self-explanatory and in-
dicate how each successive midcourse maneuver reduces the likely
actual trajectory deviations from the specified nominal target
conditions, Notice that after the second correction, the un-
certainty in B.R is almost forty times as great as the likely
uncertainty in B.T, A closer inspection of the process ex-
plains why, From the preceding table it can be seen that the
30 values for the execution error at 30 days are given by 49,5,
19.8, and 27.3 mm/sec for the X, ¥, and Z components re-
spectively, These numbers result from using the effective mid-
course correction "E EAVi]" to compute the matrix Q. Assume

first that the only error at the second correction was a +30
or 49,5 mm/sec error in X Using the variation matrix components
Nyg4o and Moy the resulting impact parameter plane error

would be approximately 170 km in BT and 800 km in B.R, A
full detailed analysis, including the correlation errors in the
execution process, would demonstrate that for the given example
problem, corrections at 5 days and 30 days would result in B.R
errors roughly forty times as large as the errors in B.T,



TABLE 26.— TARGET CONDITION UNCERTAINTIES FOR BASE
ERROR ANALYSIS RUN

Correction After After 1st | After 2nd | After 3rd
injection | midcourse | midcourse | midcourse

Data
3GB-T’ km 163 463 1692 22.2 43.7
30B-R’ km 778 078 3451 818 33.4
3¢ maximum
eigenvalue, 793 710 3452 818 52.6
km
30 minimum
eigenvalue, 46 361 1691 19.1 16.2
km

; a
Orientation
of ellipse +78.6 |  +88.7 | +490.8 +35.7

in B~plane,
deg

Angle measured is to major axis from T-axis (posltive is
counterclockw1se)
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From table 26 it is apparent that the third midcourse correc-
tion, which occurs 197 days after injection, significantly shifts
the orientation of the 30 wuncertainty ellipse in the impact
parameter plane, Also, even though the B.T uncertainty is
actually increased by the third correction, this final midcourse
reduces the B+.R errors to an acceptable level,

2, Other Mars runs,- A number of additional error analysis
runs based on the same nominal trajectory to Mars were made to
demonstrate changes in key values, The first additional run
varied only the execution error model and the number of guidance
corrections., The third correction was omitted altogether to
show what happens to the planetary approach navigation uncertain-
ties when they are uninfluenced by a recent midcourse correction,

The change in the execution error model did not result in any
significant navigation or target condition uncertainty shifts,
However, as was expected, the navigation uncertainties in the
neighborhood of Mars did exhibit measureable change, Table 27
shows the late navigation uncertaintiesg for the error analysis
mode run without the third midcourse correction and figure 13
compares a specific position component uncertainty during planet-
ary approach, with and without a third midcourse correction 197
days after injection, The slight early difference between the
two is due to using the auxiliary execution error model discussed
in a previous section,

Table 27 shows even more dramatically the typical position
and velocity uncertainty behavior that occurs as the vehicle
passes through closest approach to the target planet, Before
entering the sphere of influence of Mars, the orbit determina-
tion uncertainties are more or less constant as a result of
navigation that has taken place over the long period of time
since the second midcourse correction, About 500 000 km from
Mars and approximately 204,8 days after injection, the velocity
uncertainties begin to change, At a distance of 291 000 km from
Mars, the .30 velocity uncertainties have increased significantly
to 2,58, 4,05, and 1,17 mm/sec, Another measurement is made when
the spacecraft is 33 000 km from Mars, and after this range rate
measurement has been filtered, the 3g wvelocity uncertainties
are still 60.3, 46,5, and 40.5 mm/sec, The vehicle is rapidly
accelerating and, with no more measurements being processed,
these velocity uncertainties increase to about 3 m/sec at peri-
apsis, A measurement taken when the hypothetical vehicle is
236 000 km from Mars on an outgoing hyperbola only reduces the
30 wvelocity uncertainties to 2,13, 1,59, and 1,98 m/sec.
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The position uncertainties, om the other hand, drop dramati-
cally as Mars is approached, At periapsis the 30 position un-
certainties are given by 4,35, 10,8, and 4,9 km, considerably
less than they were during the heliocentric phase of the trajec-
tory. Just after periapsis, however, the velocity uncertainties
that were building up on the incoming hyperbola cause the position
uncertainties to skyrocket, After processing the range rate
measurement made when the vehicle is almost a day past periapsis,
the 3¢ position uncertainties are 165, 123, and 160 km,

The next error analysis run involved increasing the assumed
measurement accuracies for both range and range rate by a factor
of three, The 30 measurement inaccuracies were 3 mm/sec for
range rate and 3 m for range. Tables 28 and 29 present the
navigation uncertainties for the higher accuracy run, Figure 14
is a graph comparing the early navigation uncertainties for the
base run and the higher accuracy run, It shows, in general, how
higher accuracy measurements improve the convergence of the orbit
determination process, Some interesting features of this compari-
son are worth noting, After one measurement, for example, the
navigation uncertainties are virtually equal, The higher ac-
curacy measurements only pay off when several measurements have
been processed, By the time of the first guidance correction,
the 30 navigation uncertainties for the high accuracy run are
roughly one-third those for the base run, Studies similar to
this one indicate that if a system is completely observable, the
increased navigation accuracy due to increased measurement ac-
curacy is roughly one to one, With a partially observable sys-
tem the above statement is not true,

Another error analysis mode run was made with an injection
covariance matrix that was still diagonal, but whose terms were
four times as large as those in the base run, The 30 injection
errors were thus twice as large, As was expected, the expected
magnitude of the first midcourse almost exactly doubled; it was
17,275 m/sec, The remaining midcourse magnitudes were also ap-
proximately twice as large, The run was made with the higher
accuracy measurements assumed, Table 30, which presents scattered
navigation uncertainties for the poor injection run, should be
compared with tables 28 and 29 to obtain the influence of a poorer
injection covariance on the processed orbit determination un-
certainties, Position and velocity uncertainties, although
initially larger, are filtered to approximately the same level
despite the poorer injection,
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Figure 14,- Navigation Uncertainties for Error Analysis Run
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Two error analysis mode runs were also made under the assump-
tion that some dynamic or process noise existed, For the first
run, called the low dynamic noise run in table 31, the diagonal
process noise matrix was computed over each time interval with

-2 2 4 .
a k wvalue of 10 2 km‘/sec in all three acceleration compo-
nents, This roughly corresponds to an unmodelled acceleration
-5 2
(36) of 3 x 10 mm/ sec

noise run, used a k wvalue of 10

The next run, called the high dynamic
-18

kmz/seca, which represents

a 30 unmodelled acceleration of 3 x 10_3 mm/secz.

The purpose of the two runs was to determine the increased
magnitude of the velocity corrections when some random and bias
accelerations were present along the trajectory, From table 31
it is obvious that the first level of dynamic noise does not
significantly change the likely magnitudes of the midcourse maneu-
vers except for the third correction., The most likely value for
the third correction magnitude is now 2,418 m/sec, which reflects
the modeling of the unknown accelerations over the long helio-
centric phase between the two corrections,

For the high dynamic noise rvun (table 32) the likely magni-
tude of the first correction remains more or less the same,
However, the second correction requires significantly more fuel
(3.521 m/sec for ]AN]) and the third correction, of likely
magnitude 223,17 m/sec, is horrendous, In some general sense,
then, these two runs indicafe that fuel requirements remain ap-
proximately the same if the unmodelled accelerations are of the

order of 10-5 mm/Secz. However, if there are unmodelled accelera-

. . -3 2 . ;
tions as high as 10 ~ mm/sec” acting along the trajectory --
particularly if these accelerations are constant biases -- then
the fuel requirements for the midcourse maneuvers are much higher,

No target condition uncertainties are shown for the dynamic
noise runs because their meaning is obscure, The artificial ad-
dition of diagonal dynamic noise, although it can result in a
feel for likely correction magnitudes due to unmodelled accelera-
tions, changes the geometry of the processed covariance matrices
in an arbitrary fashion, This, in turn, results in impact param-
eter plane dispersions that reflect the arbitrary addition of the
dynamic noise,



TABLE 31,- GUIDANCE CORRECTION INFORMATION FOR LOW DYNAMIC

NOISE RUN
Correction
No. At 5 days At 30 days At 197 days
Data 1 2 3
E [|av|], m/sec | 8.638 0.087 2,418
T m/sec 6,287 0,039 1.056
"E [av]," m/sec |X = 7,716  |X = 0,072 %= 1,809
Y= 0,342 ¥= 0,029 ¥=-1.221
7 = -3,866 Z = -0,392 z = 1,039
Qu1, m2/sec? 1,311 x 1073 | 2,761 x 107% | 3,657 x 10™*
Gon, m2/sec? 3,728 x 1073 | 4,337 x 105 | 3,258 x 107%
Gz, m/sec? 3.123 x 1077 | 8.131 x 1075 | 3,166 x 107*
Nis -8,658 x 10° |-9,124 x 10° | -6,544 x 10°
N24 -2,478 x 107 |-1.630 x 107 | -3,142 x 10°

TABLE 32.~ GUIDANCE CORRECTION INFORMATION FOR
HIGH DYNAMIC NOLSE RUN

Correction
No. At 5 days At 30 days | At 197 days

Data 1 2 3

E |av] , m/sec 3.671 3.521 223,172

e m/sec 6.285 1.408 92,664
X= 7.747| X= 3.519 | X = 152.997

"E[ V1", m/sec| Y =-0.343] Y= 0.047 | Y = -75.765
Z=-3.882| Z = -0,125 | Z = 143.727

Q11, m?/sec? 1.318x<107% | 4.498x107* 1.414

Qr2, m2/sec? 3.755x1073 | 6.,199x107% 2.226

Q33, m?/sec? 3.147x10-3 | 6.198x107% 1.540

nis -8.658x10% | -9.124x10° —6.544x105

Nay -2.478x107 |-1,630x107 -3.142x10%
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The next example run, called the auxiliary error analysis run
on the tables, again used 65 measurements, Now, however, 61 of
these measurements were from the same Earth-based station
(Goldstone) and four of the observations, taken near the planet
Mars, were assumed to come fron onboard sensors, Table 33 gives
the detailed inputs for the auxiliary error analysis run, The
nominal interplanetary trajectory was still the same as given in
table 22,

Table 34 tabulates the early navigation uncertainties along
the auxiliary run and can be compared with table 23 to establish
whether or not three different tracking stations operating one-
third as often are better than one station in reducing navigation
uncertainties, Table 35 features the processing of hypothetical
onboard measurements when the vehicle was near Mars,

For both the base run and the auxiliary example run of the
error analysis mode, 15 separate measurements of range and range
rate were made before the first midcourse correction, Taking
five measurements each from Goldstone, Madrid, and Canberra, the
3¢ navigation errors five days after injection were 0,87, 1,17,
and 0,98 km for the position uncertainties, and 2,43, 2,71, and
2,76 mm/sec for the velocity uncertainties, When all 15 observa-
tions were assumed to have been made by Goldstone, the comparable
position uncertainties were 1,91, 2,52, and 2.40 km, while the
30 velocity errors were 4,95, 5,79, and 5,85 mm/sec, Thus, even
though the same number of measurements of the same accuracy were
taken for both runs, when the observations came from three dif-
ferent stations the 30 uncertainties at the first midcourse
were less than half as large, This phenomenon was noticed re-
peatedly during the test runs and is doubtless related to the
concept of observability as well as the geometry of the specific
problem involved,

The final error analysis example run for an interplanetary
flight from Earth to Mars used an augmented state vector, The
program was exercised in the error analysis mode with TAUG = 11,
meaning the state vector had 17 components including three
Goldstone station location biases, biases in p for the Sun and
Mars, range and range rate biases from Goldstone, and biases in
all four onboard measurements, Except for the inclusion of the
augmented state vector, all input conditions were the same as
for the auxiliary error analysis run just discussed,
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Table 36 contrasts the target condition uncertainties after
injection and the two corrections for the augmented and non-
augmented runs, The uncertainties in the various augmented
parameters were quite small initially and their contribution to
increasing the overall navigation uncertainty, as reflected in
target condition dispersions, were slight as shown in the table,
The discrepancy between the numbers presented in tables 36 and
23 is partially due to the higher navigation uncertainties, but
is mostly the result of an extremely simple execution error model
used early in the development of STEAP and subsequently discarded,
The main point of table 36 is to confirm that reasonable un-
certainty values for the augmented parameters result in only small
changes in the target condition uncertainties, The specific hypo-
thetical uncertainties for the 1l augmented biases, all of which
were assumed to have mean zero, are given in the first line of
table 39,

Tables 34, 35, 37, and 38 contrast the position and velocity
navigation uncertainties resulting from the augmented and non-
augmented runs, Figure 15 presents the contrast between them
for a particular component of the navigation uncertainty, Ex-
amining tables 34 and 37, the effect of the augmented state is
clear, After the processing of only a few measurements, when
comparatively large navigation uncertainties are being reduced
by the estimation algorithm, there is not a significant difference
between the two, However, the non augmented state error analysis
run assumes that the values for all the biases are known to be
exactly zero, with no error, and thus reduces the position un-
certainties to 3o wvalues of 1,91, 2,52, and 2,40 km just before
the first midcourse correction, The augmented state vector run,
even though it is based on a 'solve for' navigation algorithm,
acknowledges the existence of uncertainties in the augmented
parameters, Consequently, the reduction in the navigation un-
certainties is inhibited by these uncertainties and the 3¢ posi-
tion errors after processing 15 range and range rate measurements
are higher, At the time of the first midcourse correction these
higher navigation position uncertainties are given by 2,71, 2,81
and 3,75 knm,

Comparing tables 35 and 38, one can see the total effect, over
the entire example trajectory, of acknowledging the specified un-
certainties in the augmented parameters, After processing the last
range rate observation taken after the vehicle has passed Mars
periapsis, the 3¢ position errors for the nonaugmented run are
found to be 186, 135, and 168 km, For the augmented run made
under exactly the same conditions, these final 3¢ position un-
certainties are 256, 190, and 236 km, roughly 30 to 40 percent
higher,



TABLE

36 .~ TARGET CONDITION UNCERTAINTIES FOR AUXILIARY ERROR
ANALYSIS RUN, AUGMENTED VS NONAUGMENTED

Nonaugm.enteda Augmenteda
Data After After 1lst | After 2nd After After 1lst | After 2nd
injection | midcourse | midcourse | injection | midcourse | midcourse

30B~T’ km 163 463 1920 751 163 463 1920 757
36B-R, km 778 078 3880 928 778 078 3881 930
30 maximum
eigenvalue, 793 710 3880 943 793 710 3881 947
km
30 minimum
eigenvalue, 46 361 1919 731 46 361 1920 736
km
Ellipse
orientation +78.6 |  +87.5 | +73.3 +78.6 | +89.2 | +72.7
in B-plane,
deg

8 . .
This run uses different execution error model from base run.
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Recall that exercising the error analysis mode with an aug-
mented state vector assumes that the underlying navigation
algorithm is operating in a "'solve for" mode, Table 39 gives
the uncertainties in the various augmented parameters as they are
changed during the example trajectory, The initial uncertainties
for these parameters are quite small and only two of them, biases
in p for both the Sun and the target planet Mars, are significantly
altered over the course of the trajectory, The uncertainty in the
range bias, for example, is never changed except in the eighth
significant figure, Its original 30 wuncertainty is only 1,5 m
and, effectively, the navigation process never becomes accurate
enough to pick up the single contribution of the ranging bias,

The 3¢ initial uncertainty for the geocentric station location
bias is only 6 m, Again, position uncertainties of this magni-

tude are dwarfed by the kilometer magnitude errors in the esti-

mated nonaugmented state vector and no significant reduction re-
sults after processing the data,

In other words, the numbers in table 39 indicate that, for
these specified uncertainty levels and the given conditions for
the example run, the only two uncertainties whose influence can
be definitely singled out are the gravitational constant biases
for the Sun and the target planet, At the end of the run, the
uncertainty in the Sun's gravitational constant has been reduced

3.3 2 i s
to a 30 level of 22,5 x 107 km /sec from an initial value of
3 3 2 . .,
90.0 x 107 km /;ec , @& reduction by a factor of four, Similarly,
the uncertainty in the Mars gravitational constant has come down

from (30) 9 km3/sec2 to 3.63 km%/secz, about a factor of three,

Results similar to those given in table 39 generally play a
key role in setting up an actual orbit determination process for
a given mission, The JPL DPODP system, for example, has both a
"consider" mode, which reflects uncertainties in various param-
eters back into the state vector without actually estimating
their values, and a "solve for'" mode, It would be virtually im-
possible to run a real-time navigation process with every single
parameter imaginable included in the augmented state vector,

One can, however, perform a priori studies similar to the one
just given and determine, for reasonable uncertainties in all the
parameters based on physical knowledge, which parameters should
be ‘included in the ''solve for'" mode and which should just be
"considered," The parameters whose uncertainties decrease
significantly during the trajectory and bring about reductions

in position and velocity errors due to their being estimated
should be included in the "solve for' state vector,
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3, Mars in-orbit run.- It is well-known that one of the most
difficult current orbit determination problems is the precise
computation of vehicle trajectories around another gravitational
body using only Earth-based tracking. Some of the orbit determi-
nation problems associated with the lunar flights emphasize this
difficulty and it should only be expected, given the mathematics
of the process, that the problems, will be accentuated for a
Mars Orbiter, Thus, even though STEAP is not currently set up
in the most advantageous way to handle orbits around a planetary
governing body, an error analysis run for a vehicle in orbit
around Mars was made to see if anything could be learned.

The conditions for the test run are given in table 40. The
nominal orbit is near Mars-synchronous with an inclination of 40°
and periapsis-apoapsis parameters of 4800 and 35 300 km, respec-
tively. Since it is intended to place the Viking Orbiter in a
similar orbit, such a problem is realistic. Fifty measurements
a day for about two orbits were taken from Earth-based tracking
stations and the 30 range rate uncertainties were assumed to
be 3 mm/sec. The initial position and velocity errors, large
because they would result from an orbit injection maneuver of
roughly 1300 m/sec on a real flight, are given by (3¢) 150 km
and 18 m/sec.

Table 41 presents the resulting diagonal elements of the pro-
cessed covariance matrix for this example as well as the distance
from the center of Mars and velocity magnitude in areocentric
coordinates for selected orbit epochs. Figure 16 is a graph of
the same data. The general trend is obvious. Starting at or
near periapsis for the orbit, the position uncertainties increase
slightly during the first fourth of the orbit while the wvelocity
uncertainties are being reduced by the filtering algorithm., At
apoapsis the position errors are still larger than they were )
initially, while the velocity errors have been reduced roughly
an order of magnitude. As the spacecraft heads toward periapsis,
the position uncertainties rapidly decrease until after ome Mars
orbit their 30 wvalues are 4.26, 3.24, and 3.90 km, a reduction
by a factor of 35 to 45 for one orbit. The 30 welocity errors
after one orbit are down to 1.56, 1.14, and 0.59 m/sec, also a
significant reduction.
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On the second orbit the process essentially repeats the gen-
eral trend. The position errors increase while the vehicle moves
away from Mars and iLhe estimation algorithm continues to filter
effectively to reduce the velocity uncertainties. After approxi-
mately two orbits the 3¢ position errors are down to 0.63, 0.45
and 0.63 km, an additional reduction by a factor of 5 to 8 for
the second orbit. The 30 velocity uncertainties after two or-
bits have been reduced to 0.345, 0.251, and 0.168 m/sec. Thus it
appears, on the surface, that a Mars orbiter can be very success-
fully tracked from Earth-based radar stations.

bd

Table 42 adequately demonstrates why precise orbit computa-
tion for a problem such as the one postulated is very difficult.
Recall that a dynamic system's nonobservability, for a recursive
navigation process, mainfests itself in terms of correlation co-
efficients near unit magnitude. The correlated uncertainties of
the state vector elements throw some doubt on the usual interpre-
tation of table 42. Errors in every single component of the
state vector are highly correlated with errors in every other com-
ponent, If the system is observable at all (that is, has a unique
solution), it is highly ill-conditioned.

The meaning of all the nines in the correlation coefficient
table is that the individual error components are just barely
separable under the set of assumed observations and data process-
ing schemes. More importantly, and herein lies the primary prob-
lem in determining a spacecraft's orbit around another governing
body from Earth-based tracking, this ill-conditioning means that
the orbit estimate is extremely sensitive to slight changes in
the measurements. Since these slight changes in the measurements
could be caused by dynamic forces not modelled in the equations,
one is led to the natural conclusion that the orbit estimate is
highly unstable and that, even if there is theoretically a unique
solution for the orbit, imprecise knowledge of all the governing
influences make its realization unlikely, In a sense, then, the
variances given in table 41 are worthless, Only if everything
about the spacecraft's orbit and the observations is known per-
fectly do these position and velocity uncertainties have any mean-
ing.

The only way to test the reaction of an orbit determination
process with cross-correlations in errors like those in table 42
is to run many simulation mode studies. Preliminary investiga-
tions have been made that confirm the inherent instability of
the estimation algorithm. Additional buttressing of STEAP to
handle in~orbit problems will be required before these results
can be published and any conclusions substantiated.
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4. Venus run.— Table 43 presents the program input used for
a sequence of Venus runs from the proposed Planetary Explorer
launch window. The injection date is March 9, 1972, and the date
of closest approach to Venus is September 6, 1972. The targeting
mode of STEAP was again used to yield injection conditions con-
sistent with a Cape Kennedy launch, a nominal circular parking
orbit, and Venus sphere of influence conditions B'T = 13 295
km with B*R = 8484 km. Guidance corrections were made at vari-
able times using the fuel-saving two-variable B-plame policy.
The measurement schedule and accuracies are given in the table
as well as the assumed execution accuracy for all runs. The in-
jection covariance matrix was computed from V, 3, vy, errors
for the assumed Planetary Explorer launch vehicle.

Six Venus runs were made with the error analysis mode of
STEAP, all exactly the same in every respect except for the times
of the guidance corrections. The purpose of the study was to
analyze the effect of various midcourse correction times on the
key mission analysis parameters computed by the error analysis
mode.

Table 44 presents a summary of the AV information for the
six different runs. The first row on the table tells the times
of the assumed guidance maneuvers for each of the runs., The
most striking quality of table 44 is that the magnitudes of the
expected AV maneuvers are not significantly influenced by vary-
ing the correction times. This result has been noticed in almost
all test runs for single leg missions. The last row on the table
gives a total sum of most likely magnitudes plus 30 wvalues and
is probably a good indication of the fuel loading requirements.
The savings resulting from performing four corrections probably
does not justify the additional sequencing and manpower required
at each correction time,

Another fact that stands out from the data presented in table
44 is that it is the first correction that requires the bulk of
the fuel available for the midcourse maneuvers, In a sense, since
subsequent corrections are relatively small, one could say that
for the numbers used in these example Venus runs, the midcourse
execution process is much more accurate than the launch vehicle
being employed. An a priori optimization, in terms of fuel ex-
penditure, would probably show that only a partial correction
(that is, only partially nulling predicted target condition de-
viations with the midcourse maneuver) at the first maneuver )
would lessen the fuel-loading requirements, However, the current
error analysis mode of STEAP does not allow for such partial cor-
rections.
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TABLE 43.- CONDITIONS FOR VENUS ERROR ANALYSIS RUN

Injection date: Mar. 9, 22 hr, 36 min, 46.782 gec, 1972
Closest approach date: Sept. 6, 8 hr, 59 min, 29.518 sec, 1972

Injection conditions: (geocentric ecliptic coordinates)

X = 4814.86 kn X = 7.482996 kn/sec
Y = =3369.75 km é = 8,603163 km/sec
Z = -2931,37 km é = 1,520052 km/sec
T, = 6567 .42 km Vg = 11.503052 km/sec
Venus sphere of influence conditions:
B = 15 856 km B+ R= -8 484 km
B+ T=-13 395 km tgr = Sept. 4, 23 hr, 59 min, 53.967 sec, 1972

Ephemeris included Earth, Venus, Sun, Jupiter, Moon

Accuracy level: 5 x 10-8 True anomaly: 7.696 mrad
No dynamic noise

State transition matrices from patched conic

Guidance corrections at variable times, 2-variable B-plane policy

Execution errors: o2 = 1% 10™% o2 = 100 cm?/sec?
pro res
2 o .2 -5 2
I5a UﬁB 4 x 1072 rad
Measurement schedule - Goldstone measured range and range rate 5 times at 0.2, 1.2, 2.2, 3.2, 4.2,
Madrid measured range and range rate 5 times at 0.6, 1.6, 2.6, 3.6, 4.6
Canberra measured range 'and range rate 5 times at 0.9, 1.9, 2.9, 3.9, 4.9
Goldstone measured range rate 22 times at 5.3, 7.3, 9.3, 11.3, 13.3, 15.3,
60,4, 75.4, 90.4, 105.4, 120.4, 135.4, 150.4, 165.2, 167.2, 171.2, 173.2,

175.2, 177.2, 179.2, 181.2

Madrid measured range rate 13 times at 6.6, 8,6, 10.6, 12,6, 14.6, 16.6, 65.7,
80,7, 95.7, 110,7, 125.7, 140.7, 155.7

Canberra measured range rate 24 times at 17.9, 22.9, 27.9, 32.9, 37.9, 42.9,
47.9, 52.9, 57.9, 70.8, 85.8, 100.8, 115.8, 130.8, 145.8, 160.8, 166.9,
168.9, 170.9, 172.9, 174.9, 176.9, 178.9, 180.9

Total of 74 measurement times

Measurement accuracies: U% = 225 m? for all ranges

o% = 9 m?/sec? for all range rates
D

Injection covariance computed from V, y, I uncertainties

9.000
0 9.000
Py = |° 0 9.000 SYMMETRIC
0 0 0 1.4762 x 1073
0 0 ] -1.3219 x 1073 2,4753 x 1073
0 0 ] -1.769 x 10™%  ~1.6308 x 1073 2.8009 x 1073

Units are km and kn?/sec?
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Table 45 and 46 compare target condition uncertainties after
every sequence of one or two corrections considered by the exam-
ple runs. From the results, it is apparent that whether the first
correction is made at 3, 5, or 7.5 days is not important from the
point of view of target condition uncertainties. Table 46 demon-
strates, as would be expected for this example, that the later
the second correction is made, the less the likely errors on en-
.countering the impact parameter plane. This is only natural
since the terms of the variation matrix n are going down through-
out the flight.

Table 47 presents the final target condition uncertainties
(likely deviations from nominal target conditions) as a result of
using each of the six guidance correction schedules. The four
schedules that have the last maneuver 155 days after injection
show markedly similar results. However, one of the schedules
that assumes corrections at 5, 40, and 155 days has an uncertainty
ellipse semiminor axis that is noticeably smaller. The most in-
teresting features of table 47 are the orientation of the uncer-
tainty ellipses in the B~plane. Depending on the location of the
target aim point, errors in B*T and B°*R may be translated in-
to errors in hyperbolic inclination and radius of closest approach.
The schedules studied show a shift of up to 7° in the orientation
of the impact parameter plane uncertainty ellipse. 1If, for the
given mission, uncertainties in inclination could be tolerated
more reacdily than errors in periapsis distance (worry about im-
pacting Venus, for example), then the correction schedules could
be chosen to produce a B-plane uncertainty ellipse alignment that
reduced likely periapsis distance errors.

Table 48 compares the diagonal elements of the navigation un-
certainty covariance matrix at the time of closest approach to
Venus. The results might have been anticipated. The schedule
employing four corrections has the least navigation uncertainty
because its final correction, and hence its execution error, were
small in magnitude. The schedules that made the last correction
at 170 days have larger navigation uncertainties because their
final execution errors have not been completely filtered. Table
48 also indicates that making the corrections at 5, 40, and 155
days results in lower tracking errors at the planet than the other
two schedules with three corrections that make the third maneuver
at 155 days. A detailed investigation of the available output
turned up one of the reasons why midcourse guidance optimization
can be important. Between 40 and 80 days, the likely direction
of the second correction shifts from a direction of high naviga-
tion accuracy to a direction of low navigation accuracy. Thus,

a correction at 40 days is most likely to be made in a direction
with small navigation uncertainties. As a result, at the time

of the last correction, errors in the Z component of position were
significantly less if the second correction was made at 40 days.



Midcourse guidance optimization is a subject-that has not

been pursued sufficiently.

cation is essential,

For multiplanet missions, its appli-

And as the above results demonstrate, even

for single~leg missions much can be learned by taking a prelimi-

nary look at several candidate correction schedules.

TABLE 45.- COMPARISON OF TARGET CONDITION UNCERTAINTIES
" FOR DIFFERENT 1ST MIDCOURSE TIMES

.Correction

If 1st If lst If 1st
After . . ,
iniection midcourse midcourse midcourse
Data 3 at 3 days -| at 5 days at 7.5 days
30, ps km 1.1046 x 107 | 90 014 90 144 90 091
305,50 kB 4.3624 x 10 | 35 454 35 965 35 816
3o
max
eigenvalue, 1.1948 x 107 | 96 570 96 877 96 766
km
30min
eigenvalue, 3.0797 x 10° 5 795 5 883 5 959
km
. . a
Orientation
~of ellipse 338.1 338.1 338.5 338.6
in B-plane,
deg

a R . . ; : . ‘ 1
Angle measured is to major axis from T axis (positive is counter-—

clockwise).
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t TABLE 46.~ COMPARISON OF TARGET CONDITION UNCERTAINTIES
AFTER TWO CORRECTIONS

Lorrections
1st at 3 1st at 3 1st at 5 lst at 5 1st at 7%
2nd at 8 2nd at 120 2nd at 40 Znd at 80 2nd at 80
Data :
3UB'T’ km 13 393 718 10 037 6345 - 6307
3oE.R, km 5 220 247 2 978 1602 1609
30 , km 14 371 719 10 459 6543 6507
max
36, , km 279 246 471 152 153
min
. . a
Orientation :
of ellipse in 338.7 357.6 343,7 345.9 345.7
B-plane, deg '

a . . . . e .
Angle measured is to major axis from T axis (positive is counterclockwise).
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D. Simulation Mode

Results from several runs made with the simulation mode of
STEAP will be presented in this section. It is hoped that these
few examples will indicate some of the many uses for the simula-
tion mode.

The simulation mode differs considerably from the error analy-
sis mode. Within the simulation mode of STEAP, one portion of the
program computes an "actual' trajectory and generates observational
data. These data are then fed into the estimation algorithm that
attempts to reproduce the "actual" trajectory. The details of
this process have been discussed in an earlier section.

Table 49 presents the input values used for example runm 1 of
the simulation mode. The basic trajectory, which was the same
throughout all the simulation mode example runs, is a Mars trans-
fer from the Viking launch window. Again the injection conditions,
generated by the targeting mode of STEAP, were chosen to satisfy
the Mars sphere of influence conditions B-T = 4452 km, B-R =

8548 km, tor = 204 .417 days after injection. Guidance corrections,

using a three~variable B-plane policy, were simulated at 5, 30,
and 180 days after injection. The injection covariance matrix
was diagonal with the initial 30 position errors given by 3 km
and the initial 30 wvelocity uncertainties specified as 9 m/sec.
All of the above data remained constant throughout the example
simulation mode runs.

The first run was designed to show a case of strong orbit de-
termination convergence. The only input used that impedes con-
vergence is the calculation of the state transition matrices from
the analytic patched conic. This was done to conserve computer
time so a nonzero process noise matrix Q, with all the unmodelled

acceleration constants k equal to 10_22 km%/seca, was added to

offset the inaccuracy of the state transition matrices. The nom-
inal trajectory was updated by quasi-linear filtering events at
2.5, 5, 30, 100, and 180 days; the updating was done after the
guidance maneuvers when the two occurred simultaneously. Table
49 shows the measurement schedule for the 71 measurements used

by the example. The actual measurement accuracy was an order of
magnitude higher than the measurement accuracy assumed by the
estimation algorithm; that is, in generating the actual measure-
ments, white noise samples corrupting the measurement were chosen
from distributions whose standard deviations were an order of
magnitude less than those that were assumed by the navigator.
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TABLE 49.,- CONDITIONS FOR SIMULATION MODE RUN 1

Injection date: July 24, 9 hr, 25 min, 47.637 sec, 1973
Closest approach date: Feb. 16, 0 hr, 15 min, 42.8 sec, 1974

Injection conditions: (geocentric ecliptic coordinates)

X = ~1131,91 km i = 9,35948 km/sec
Y = -6575.61 km ; = ~2,88174 km/sec
Z = 75.601 km é = 6.21518 km/sec
T = 6672,75 km Vg = 11,59883 km/sec

Mars sphere of influence conditions:

B = 9637.64 km B « R = 8547.70 km

L}

B+ T = 4452.06 . km tSI = 204,41694 days after injection
Ephemeris included Earth, Sun, Mars, Jupiter, Moon
Accuracy level: 5.C00 x 1078 True anomaly: 7.696 mrad
Guidance corrections at 5, 30, 180, 3-variable B-plane policy
Quasi-linear filtering events at 2.5, 5, 30, 100, and 180

State transition matrices from patched conic

Injection covariance diagonal: All position uncertainties, U; = 1 kn?

All velocity uncertainties, 0% = 9 n?/sec?

Dynamic noise comstant: k = 10722 km?/sec?

Measurement schedule - Goldstone measured range and range rate 5 times at 0.2, 1.

Madrid measured range and range rate 5 times at 0.6, 1.7, s

Canberra measured range and range rate 5 times at 0.7, 1.0, 2.

Goldstone measured range rate 25 times at 5.3, 8.3, 11.3, 14,3, 1
23.3, 26.3, 29.3, 30.3, 53.3, 76.3, 99.3, 122.3, 145.3, 168.3,
201.3, 202.3, 204.3, 205.3, 206.3, 207.3

Madrid measured range rate 16 times at 6.6, 9.6, 12.6, 15.6, 18.6, 21.6,
24,6, 27.6, 37.6, 60.6, 83.6, 106.6, 129.6, 152.6, 175.6, 198.6

Canberra measured range rate 15 times at 7.9, 10.9, 13.9, 16.9, 19,9, 22.9,
25.9, 28.9, 44.9, 67.9, 90.9, 113.9, 136.9, 159.,9, 182.9

Total of 71 measurement times

Assumed measurement accuracy: o2 = 25 x 1078 km? for all ranges
=9 x 10712 km?/sec? for all range rates
Actual trajectory ephemeris and accuracy level same as nominal

No actual station location biases, measurement biases, dynamic blases, or unmodeled accelerations

Actual measurement aceuracy: o% = 25 x 1078 xm? for all ranges

02 = 9 x 1071% kn?/sec? for all range rates

D
Assumed execution accuracy: Actual execution errors:
2 L ~6 .
9o 25 x 10 Correction 1 2 3
oies = 9 x 10-10 p2/sec? k -0.0025 0.004 0.002
s 1.5 x 1075 -1.8 x 1075 1.1 x 10~% km/sec
agu = cée =5 x 10735 rad?
Sa ~0,0054 0.002 0.007
88 0.006 =0.004 0.002




For example, in run 1 the actual and assumed trajectories
were computed from n-body routines using the same ephemeris. and
step size. 1In addition, the actual dynamic and measurement biases
used in the computation of the actual trajectory and observations
were all zero. The assumed and actual execution errors are also
given in table 49. To summarize, everything about the problem ex-
cept the computation of the state transition matrices was chosen
to produce convergence.

Table 50 contains a chart of the difference between the esti-
mated and actual trajectories throughout the example run. The
initial deviations were chosen to be +0.5, based on the injection
covariance matrix. Thus, the initial errors in the navigation
process were half a kilometer for each position component and 1.5
m/sec for each velocity component. The chart shows that after
one day of taking wmeasurements the position errors are about 1 km,
while the velocity errors, as predicted earlier in an error analy-
sis mode run, are down to less than 10 mm/sec.

Recall that in the simulation mode an actual trajectory is
being flown and concurrently estimated. The numbers in table 50
are the differences between the actual trajectory and the esti~
mated trajectory. The estimated trajectory results from a Kalman
recursive filtering algorithm that operates on simulated measure-
ments generated within the program. Thus, the example represents
a 'test'" of the underlying orbit determination process.

Between 1.7 days after injection and the first guidance cor-
rection at injection plus five days, the orbit determination in-
accuracies increase measurably. The cause of the increase is the
error in the state transition matrices. During this period the
hypothetical spacecraft is in the transition region from the
Earth's sphere of influence to the Sun's. Since the state transi-
tion matrices are computed in terms of a two-body conic around
the governing body, they are determined from either a Sun-based
ellipse or an Earth-based hyperbola, thereby neglecting the in-
fluence of the other body. At the time of the guidance correc-
tion, when the vehicle has essentially entered its heliocentric
phase, the position inaccuracies are between 3 and 8 km, while
the velocity errors are between 9 and 24 mm/sec.
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TABLE '50.~ ORBIT DETERMINATION INACCURACIES FOR SIMULATION MODE RUN 1

A .7 .of

e o I A Tl PVl il Rves
0 0 0.5000 -0.5000 0.5000 | -1.5000 | +1.5000 | -1.5000
0.2 1 0.0446 1.7859 -1.4518 -.0154 .1083 -.0898
0.6 2 2.3158 -2.6568 -1.1971 .0393 -.0324 -.0235
0.9 3 ~0.5071 0.7014 -0.1333 -.0l88 .0178 . 0141
1.0 A 0.9244 -0.4659 -1.4281 -.0028 .0035 -.0002
1.3 5 0.0652 -0.3745 0.0167 ~. 0147 .0079 .0117
1.7 6 -1.3646 1.7986 -0.3311 -.0292 L0272 .0086
2.2 7 -3.5066 2.7680 2.1457 -.0431 . 0339 .0278
2.5 QL -4.6322 3.6631 2.8696 -.0438 .0351 .0281
2.6 8 -1.7428 5.3820 -4.0696 -.0158 . 0386 -.0126
2.9 9 ~4.3901 8.8408 -3.6306 -.0278 . 0497 -.0075
3.0 10 -2.0215 7.1929 -5.8888 -.0151 .0383 -.0212
3.3 11 -2.6637 8.2996 -6.0889 -.0163 .0389 -.0186
3.7 12 ~2.4639 7.0009 -4.8979 -.0158 .0298 -.0126
4.2 13 -2.8979 7.8795 -5.2467 -. 0146 .0291 -.0117
4.6 14 -4.1589 8.5228 -3.9148 -.0181 .0282 -.0066
4.9 15 -2.9074 7.5045 -4.8185 -.0126 .0238 -. 0088
5.0t e 3.0173 7.7149 -4.8991 | .0020 .0273 -.0475
5.3 16 -2.9031 8.4711 -6.0869 . 0044 .0294 -. 0461
6.6 17 -2.3546 11.7046 -11.3272 . 0047 0289 -. 0464
7.9 18 -0.8910 11.3442 -13.9538 .0079 .0146 -.0362
8.3 19 0.4993 10.7296 -15.5525 .0187 . 0107 -.0373
9.6 20 1.4059 11.9215 -18.8473 .0108 .0107 -.0349
10.9 21 3.7276 9.8189 -20.5071 .0128 . 0041 -.0305
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TABLE 50.~- ORBIT DETERMINATION INACCURACIES FOR SIMULATION MODE RUN 1 - Concluded

~ ~ ~
preed Rond R A L L Tl ol el Rt
12.6 23 4.2156 8.7838 | -19.8098 .0108 L0018 | -.0223
14.3 25 6.4860 6.3862 | -20.8794 .0115 | -.0016 | -.0196
16.9 27 7.7134 4.6561 | -20.6205 .0103 | -.0029 | -.0148
18.6 29 6.1877 4.1707 | -17.0553 .0078 | -.0029-| -.0099
20.3 31 5.7858 3.2096 | -15.1631 .0064 | -.0035 | -.0074
23.3 34 6.9922 2.6459 | -16.8691 .0060 } -.0035 | -.0072
26.3 37 8.5614 -1.4578 | -14.2703 L0061 | -.0053 | -.0047
29.3 40 7.7296 -2.0557 | -12.0429 .0050 | -.0050 | -.0030
30.0 et 8.0324 -2.3590 | -12.2252 .0013 .0065 | -.0161
44.9 43 15.4453 -2.3768 | -28.4754 . 0044 .0006 | -.0108
67.9 46 11.5008 3.7427 | -31.8385 .0008 .0009 | -.0063
83.6 48 8.0972 4.1296 | -29.0395 | -.0006 .0007 | -.0039
99.3 50 7.5384 -.0171 | -28.2674 | -.0103 | -.0001 | -.0240
100.0 QL 7.4760 -.0207 | -28.4111 | -.0103 | -.0001 | -.0236
122.3 53 6.2417 -2.2319 | -31.2533 | -.0105 | -.0002 | -.0125
145.3 56 3.0569 2.5000 | -33.0843 | -.0009 .0009 | -.0002
159.9 58 2.9504 0.9619 | -33.1943 | -.0009 .0003 .0003
175.6 60 1.2047 2.0301 | -32.4100 | -.0010 .0005 .0008
180.0 c¥ 0.8296 2.2388 | -32.0671 | -.0086 | -.0069 . 0041
198.6 63 -0.7183 2.9729 | -29.2142 | -.0015 . 0007 . 0014
202.3 66 2.4228 -.0841 | -29.2197 | -.0005 .0002 .0015
203.3 67 2.2982 .0099 | -29.0708 | -.0005 .0002 .0017
#204.3 68 1.9931 .2608 | -28.8914 | -.0005 .0003 .0021
b505.3 69 -0.9607 .1399 7.1488 | -.0006 | -.0003 .0039
€206.3 70 1.4728 -1.3397 0.3714 | -.0010 .0011 .0032
407.3 71 -17.2326 12.4809 | -10.0277 | -.2894 .2109 | -.1669
%Distance from Mars at 204.3 = 595 000 km.
Ppistance from Mars at 205.3 = 343 000 k.
®Distance from Mars at 206.3 = 89 000 km.
dDistance from Mars at 207.3 = 182 000 km.

209



210

In a similar error analysis run, propagated covariance matrices
between 5 and 30 days after injection indicated that the Z com~
ponent of position was not as observable as the other two. For
the first example run, the Z component of the estimated trajec-
tory's deviation from the actual is indeed the most inaccurate.
Also, as was predicted by the error analysis mode, the position
inaccuracies decrease significantly as the Martian periapsis is
approached. Just after periapsis, however, both the position and
velocity errors increase significantly.

Table 51 compares the actual measurement residuals with their
a priori statistics. As was pointed out in an earlier discussion
of the problem of divergence, it is when there is an obvious in-
consistency between these residuals and their statistics that
divergence is occurring. Two factors should be remembered with
respect to table 51. First, although dynamic noise is added
throughout the flight, the only intervals where dynamic modeling
insufficiency is actually present is in the two transition regions
from Earth to Sun domination and later from Sun to Mars domination.
The error in these transition regions, as previously noted, is
caused by improper state transition matrices. Secondly, the ac~-
tual measurement white noise is an order of magnitude less than
the assumed noise, so if no dynamic noise or nonlinearities of
any kind influenced the trajectory, the measurement residuals
should look as if they come from a distribution with an even
smaller standard deviation than the one given by the a priori
statistics.

Table 51 presents three columns of data. The first column
is the actual range rate residual; that is, the difference be~
tween the predicted observation and the simulated observation.
The second column is the a priori statistical variance of the

residual computed, as described in an earlier section, from HPHT +
R. The third column results from dividing the square root of a
priori range rate variance into the actual measurement residual,
To check for statistical consistency, one can compare the values

k with likely random samples taken from a Gaussian distribution
with mean zero and unit variance.
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From table 51 one can conclude that the orbit determination
process for the first example run is indeed converging. The only
residuals outside the 1o a priori values are in the transition
region between the Earth and Sun sphere of influence. 1In fact,
by looking at the ko numbers from 5 days after injection to
Martian periapsis passage, it appears that the residual values
are smaller than their a priori statistics would suggest. The
input for run 1 explains why. Not only is the assumed dynamic
noise level higher than the actual dynamic modeling error, but
also the actual measurements are ten times as accurate as the
measurement accuracy assumed by the estimation algorithm.

Table 52 gives the guidance correction information for the
first example run. The table presents the magnitude of each com-
manded midcourse maneuver, the components of the commanded maneu-
vers, the components of a perfect correction that would be made
in the absence of navigation errors, the actual execution error
9AV for each correction, actual errors in target conditions re-
sulting from navigation and execution errors, and the a priori
target condition variances coming from the concurrent error analy-
sis. The last two columns are the square root of the a priori
dispersions divided into the actual errors.

Recall that the error analysis mode run of a similar problem
resulted in an expected value of the first midcourse of 8.638
m/sec. The commanded first correction magnitude for the example
run with +1/2¢ deviations in all injection components is given
by 7.0398 m/sec. The subsequent maneuvers are smaller than the
error analysis mode predicted, primarily because the actual ex-
ecution errors used for example run 1 were small when compared
with their a priori statistics.

The success of the guidance algorithm within the simulation
mode of STEAP is measured by the final actual trajectory's devia-
tions, in terms of the target conditions, from the nominal. The
specified injection errors lead to a B'T error of 26 522 km
and a B'R error of 166 170 km. Actual target condition errors
after the first midcourse correction are 235.692 and 26.137 km,
respectively. Second correction deviations propagated to the
target resulted in B*T and B*R errors of 48.899 and 14.488
km. After the final correction, the actual trajectory differs
from the original by 1.018 km in B-T and 30.373 km in B-R.



TABLE 52.- GUIDANCE CORRECTION INFORMATION FOR SIMULATION MODE RUN 1
C
orrection Iniect At 5 days At 30 days At 180 days
: njection . . e
lst midcourse | 2nd midcourse | 3rd midcourse
Data
Jav |, m/sec 7.0398 0.0493 0.0975
‘ com
AV, . m/sec X = 6.2373 0.0099 ~0.0620
¥ = 0.3993 -0.0310 -0.0693
Z= 3.2398 0.03690 0.0292
Voorfecr. T/s€C X= 6.2512 0.0034 -0.0619
pertect, Y= 0.3756 -0.02634 -0.0712
Z = 3.2468 0.0381 0.0422
8AV, m/sec X = 0.0147 -0.0037 -0.0077
Y= 0.0035 0.0152 -0.0075
7z = -0.0387 -0.0131 0.0032
ABT _, km -285.411 67.053 -3.680
nav
AB'R _, km 283.158 -54.765 24.799
nav
AB*T , 49.718 -115.952 2.662
N exec
AB'R , km -212.021 40.317 5.574
exec
ABT , km -26 522 -235.692 -48.899 -1.018
total
AB-R , km 166 170 26.137 -14.488 30.373
total
OZB'T’ kin 2.2526 x 10° 263 442 59 653 15 262
qu_R, km? 6.9218 x 10%° 1 525 522 27 781 30 007
k -.558 -0.458 -0.201 -0.008
BT
kB.R +.632 +0.021 -0.0868 +.175
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The first example run of the simulation mode was designed to
show that the program was working and that the underlying naviga-
tion and guidance process would operate satisfactorily under highly
advantageous conditions. As can be seen, the problem was set up
specifically to show orbit determination convergence and to demon-
strate that the governing guidance policy would bring the actual
trajectory close to the nominal at the target.

The input changes for the second example run of the STEAP sim-
ulation mode are presented in table 53. The nominal trajectory
is only updated at three quasi-linear filtering events instead of
five. The actual measurement noise is now the same magnitude as
the noise assumed by the estimation algorithm. Most importantly,
an actual unmodelled acceleration vector is specified to change
the actual trajectory between 5.003 and 7.000 days after injec-
tion. Finally, the dynamic noise level has been raised slightly.

The purpose of this second simulation mode run was to test
the orbit determination procedure when a completely unmodeled
acceleration occurs after the first midcourse correction. This
might correspond to some kind of shutoff failure in the midcourse
execution engines. The dynamic noise level was increased to give
the algorithm a chance to converge. Without any process noise
modeled, the algorithm completely fails to pick up the unmodeled
acceleration.

Table 54 is a chart of the orbit determination inaccuracies
throughout the run. Before the first midcourse corzection and
the subsequent accelerations of the actual trajectory, the orbit
determination inaccuracies are slightly higher than those for the
first run because the actual measurements are an order of magni-
tude less accurate. As would be anticipated, the orbit determina-
tion inaccuracies grow very large during and after the unmodeled
acceleration -~ the algorithm itself has no knowledge of this
acceleration and can only use its process noise matrix Q to
downgrade the a priori information. Between the second and third
midcourse maneuvers the algorithm significantly reduces the ve-
locity errors and keeps the position errors at a more or less
constant level. Finally, during the approach to Mars, the famil-
iar pattern develops; the position errors drop on the incoming
hyperbola while the velocity errors increase. Just after closest
approach both position and velocity deviations of the estimated
trajectory from the actual are very large.
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TABLE 53.- CHANGES IN CONDITIONS FOR SIMULATION MODE RUN 2

8X

Y

Dynamic noise comstants all 10720 km?/sec!

1 x 1078 kmisec?
= -1.x 10~8 km/sec?
§Z = 1 x 10”8 km/sec?

Actual measurement accuracy same as assumed

Quasi-linear filtering events only at 5, 30, and 180 days (after
corrections)

Actual unmodeled acceleration from 5,003 days to 7.000 days

TABLE 54.- ORBIT DETERMINATION INACCURACIES FOR SIMULATION MODE RUN 2

Trajectory | Meas | 4y -Sg, N -6?, | az _52, m dx -8§, ay -6§, az -SQA
time, days | no. n/sec m/sec m/sec
0 0 0.5000 ~0.5000 0.5000 -1.5000 1.5000 -1.5000
0.2 -0.2351 1.7567 -1.0012 -0.0286 0.1059 -0.0696
2.2 7 -0.7359 1.6100 -1.3421 ~-0.0128 0.0207 -0.0064
3.7 12 0.4409 -6.4503 6.8286 -0.0102 -0.0305 0.0271
5.3 16 7.0934 -16.4382 2.3069 0.1812 ~0.3799 0.1699
6.6 17 131,9825 -159.3331 42.5387 1.0307 -1.9658 0.9045
7.9 18 256.5837 -410.7727 174.7988 1.2679 -2.4923 1.2722
8.3 19 213.5021 -378.7605 214.9622 0.9591 ~2.1706 1.2034
9.6 20 323.1389 ~623.0336 347.2422 0.9601 -2.1781 1,1921
10.9 21 430.7667 -834.2454 438.3642 1.0356 -2.0611 1.1473
12.6 23 366.5367 -851.6230 585.4333 0.6475 -1.6886 1.0615
14.3 25 265.2398 ~790.9998 688.7424 0.4175 | -1.2738 0.9957
16.9 27 388.6511 | -1022.2649 773.2507 0.4966 -1.1904 0.8728
18.6 29 275.5549 -953.0326 840.6043 0.2582 ~-1.0162 0.8159
20.3 31 177.3887 -884.9866 972.4145 0.1715 ~-0.8031 0.7937
23.3 34 129.7523 -880.1365 1047.1783 0.1039 ~-0.6387 0.6951
29.3 40 24.8503 -802.4613 1118.9614 -0.0011 ~0.3894 0.5222
44.9 43 9.2582 | -1338.1043 1760.0321 0.0103 -0.3878 0.4437
99.3 50 33.1909 -2162f3936 2483.7966 0.1378 -0.0540 0.0451
175.6 60 385.9092 ~785.6891 1655.8567 0.0543 0.1038 ~-0.2068
198.6 63 491.0497 -608.0012 1171.6425 0.0566 0.0825 -0.2491
202.3 66 514,5429 ~589.,4843 1117.8244 0.0520 0.0751 -0.2528
204.3 68 224.5274 ~313.8351 1032.0901 =0.0617 0.1130 -0.2367
206.3 70 265.1279 ~285.0069 78.9861 -0.3611 0.3272 -0.3638
207.3 71 -2975.9984 2120.1338 | -4919.5444 | -49.2897 37.7035 }-77.7929
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Table 55 presents the actual measurement residuals and the
a priori residual statistics for example run 2. Recall that the
relatively high dynamic or process noise used for this example
is reflected in the comparatively high a priori residual vari-
ances. The =~4.90 vresidual at 3.7 days after injection may be
traced to the poor state transition matrices in the Earth-Sun
transition region and to the fact that for this second run the
actual measurement noise is of the same magnitude as the assumed
measurement noise. The measurement made during the unmodeled
acceleration interval has a 540 residual, a very unlikely event.
However, subsequent measurement residuals, although they are far
from consistent with their statistics, do not exhibit the proper-
ties associated with a bad case of divergence. When bad diver~
gence occurs, it is usual for each successive residual to have a
higher magnitude value for kﬁ than the previous one,

In a sense, looking at the residuals, the estimate has mod-
erately diverged from the actual trajectory between the first and
second midcourse maneuvers. Since, at the time of the second
correction the actual trajectory differs from the original nom-
inal by around 10 000 km in each component, orbit determination
inaccuracies of roughly 500 to 1000 km do not constitute a bad
case of divergence. After the second correction, due to the in-
fluence of the process noise matrix Q on the a priori residual
statistics, the residuals become more consistent with their sta-
tistics. They do not become smaller, they just are of a size
that is more consistent with the a priori statistics whose addi-
tional process noise is based on an unmodeled acceleration oc-
curring throughout the flight. This point is important. Although
bad inconsistency between residuals and their a priori statistics
is almost always an indication that the orbit determination process
is diverging, a lack of statistical inconsistency only indicates
that the position and velocity uncertainties are in more or less -
accord with their a priori covariance matrices. 1If the covariance
numbers themselves are large, as they are for example run 2 with
high process noise being added throughout, then the navigation
procedure is probably not converging very well. However, when
both the measurement residuals are becoming smaller gnd the re-~
siduals remain consistent with their statistics, then the under-
lying estimation algorithm is almost certainly converging.
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Table 56 contains the guidance correction information for
simulation mode run 2. Because of the unmodeled acceleration,
the second and third midcourse maneuver magnitudes are consider-
ably larger. The second midcourse requires 3.349 m/sec of ve-
locity change and the third midcourse uses 2.537 m/sec. After
the third midcourse correction, the actual trajectory still
misses the nominal target conditions by 783 km in B-T and 933

2

Op. and OB.R
given at the bottom of table 56 reflect the continual addition
of the dynamic noise matrix Q throughout the trajectory.

km in B R. The a priori error variances for

The third example run (table 57) of the simulation mode was
intended to study the effect of bad a priori statistics on the
underlying navigation and guidance process. No dynamic noise
was included in the estimation algorithm and all the actual errors
were large when compared to their assumed covariance matrices.
The actual measurement white noise was also sampled from distri-
butions having standard deviations five times as great as those
assumed within the estimation algorithm. The results indicate
that either this one particular run was lucky or the nominal dy-
namics being used have a stabilizing influence on the navigation
process.

The initial deviations, as shown in table 58, were 3 km in
all the position components and 9 m/sec in all the velocity com=-
ponents. These injection errors correspond to a 130 error in
each component based on the injection covariance matrix. As can
be seen from the table, the bad initial deviations plus the rela-
tively bad measurements, the poor state transition matrices, and
the possible violation of the linearity assumptions led to a sig-
nificant orbit determination inaccuracy at the time of the first
correction. However, during the long heliocentric phase of the
trajectory between the second and final midcourse maneuvers, even
with the bad a priori statistics, the algorithm effectively
tracked the hypothetical vehicle. The large orbit determination
errors after Mars periapsis has been passed always occur and do
not represent a sudden divergence.

From the statistical consistency chart (table 59) it is ob~
vious that the measurement residuals were never even moderately
consistent with their a priori statistics. The measurement taken
3.7 days after injection, for example, when all the poor modeling
focuses together, represents an 86c deviation! However, the

kéb values do not increase throughout as expected, indicating

that some enforced stability exists for this problem because of
the combined navigation and guidance process.



TABLE 56.- GUIDANCE CORRECTION INFORMATION FOR SIMULATION MODE RUN 2

i
Correction] .\ 5 days At 30 days At 180 days
Data lst midcourse | 2nd midcourse | 3rd mldcouyse
lav |, m/sec 7.0744 3.3490 2.5372
com
AV, m/sec X 6.2656 -2.9343 1.0838
" Y= 0.3480 1.4041 2.2137
Z= 3.2676 | -0.7961 -0.6022
Voerfect? M/sec| X = 6.2512 | -2.9549 0.8888
per Y= 0.375 1.7516 2.4681
Z=  3.2468 | -1.1598 -1.0745
8AV, m/sec X=  0.0152 0.0040 0.0233
Y= 0.0027 | -0.0034 -0.0030
zZ= -0.0388 | -0.0141 -0.0087
AB'T 5 km 436.750 |3195.533 745.091
nav
AB'R___, km -182.691 | 490.629 -933.354
nav
AB'T _ , km 67.835 43.287 37.575
exec
AB'R ., km -211.189 | -124.331 58.133
exec
AB-T, ., km 504.585 | 3238.816 782.666
total
AB'R___ ., km -393.881 | 366.298 -932.772
total
GZB.T, km? 299 299 | 234 538 1 427 435
o®p.ps km? 1 517 718 | 388 790 2 531 951
. .6 .65
kg 922 6.692 5
-. 0.588 -.586
Kp.n 320
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"TABLE 57.~ CHANGES IN CONDITIONS FOR SIMULATION MODE RUN 3

Quasi-linear filtering events only at 5, 30, and 180 days (after
corrections)

No dynamic noise

"Actual measurement noise larger than assumed measurement noise

G% = 625 x 1076 km? for all ranges
62 = 225 x 10712 km?/sec? for all range rates
R

Actual initial deviations larger (+30 in all components)

Actual execution errors larger

lst correction 2nd correction 3rd correction
k= -0.02 +0.005 -0.008
S = 6.0 cm/sec -3.7 cm/sec 15.8 cm/sec
o= 4 x 1072 rad -8 x 1073 rad 2 x 1072 rad
88 = -1.5 x 1072 rad 9 x 1073 rad 1.6 x 10~2 rad

220




TABLE 58.- ORBIT DETERMINATION INACCURACIES FOR SIMULATION MODE RUN 3

. & . ¢ Y

Gty [ mon | 4% 8K, |0t 01, wm a2 a2,k | O 00 | 98| R
0 0 -3.0000 3.0000 -3.0000 9.0000 | -9.0000 0.0000
0.2 1 1.5560 -11.1056 5.1791 0.1564 | -0.6946 0.3740
0.9 3 -0.6955 -13.9163 10.5464 0.1189 | -0.2199 -0.0797
1.3 5 -2.6839 ~13.1341 9.1740 0.0975 | -0.1820 | -0.0707
2.2 7 9.2361 -31.0652 1.8003. 0.1586 | ~0.2405 ~0.0878
2.9 9 21.9232 -50.1809 ~3.9517 0.1785 | -0.2814 | ~-0.0987
3.7 12 502.1509 | -504.8696| -276.5530 2.3994 | -1.8294 | -1.4127
4.9 15 400.8532 -509.7124 -59.6389 2.7121 | -2.1139 | -1.2482
5.3 16 481.5899 ~594.3624 ~91.8521 2,2072 | -2.5639 | -0.8261
6.6 17 271.7178 -519.6791 189.4962 | -1.1028 0.0580 1.8802
7.9 18 69.6799 ~62.2531 -53.5376 | -~1.4158 1.8593 0.0681
9.6 20 165.0694 113.4651 =470.0522 -0.6535 1.6147 -1.0003
12.6 23 -53.5210 297.1287 -317.8238 -0.7313 1.2599 -0.3722
16.9 27 ~-175.0070 439.8286 | -288.6674 | -0,.5904 0.9472 | -0.2061
20.3 31 -262.5282 420.3587 ~96.5663 ~0.5285 0.7247 -0.0155
26.3 37 -176.8813 403.4515} -237.1333 | ~0.3353 0.5096 | -0.0822
44,9 43 ~58.0959 711.1331 ~794.7269 | -0.0042 0.2399 | -0.2803
99.3 50 -28.6816 -40.6836 138.3024 0.0033 | -0.0610 0. 0654
145.3 56 =75.0179 84.8091 226.4378 0.0035 | -0.0208 0.0490
175.6 60 -63.5350 2.1806 352.6720 0.0053 | ~0.0231 0.0398
198.6 63 26.4306 -61.2669 370.9051 0.0531 | -0.0340 | -0.0003
202.3 66 48.8867 -73.8026 370.2857 0.0542 | -0.0366 | ~0.0020
204.3 68 24.5802 -52.5713 368.6812 0.0329 | ~0.0283 ~0.0047
205.3 69 26.6120 -55.3606 372.1360 0.0160 | ~0.0393 -0.0089
206.3 70 104.0924 -93.0535 21,7904 | -0.0318 0.0540 | -0.1069
207.3 71 ~1884.8883 | 1382.6643| ~1202.1760 | -31.5342 | 23,0819 |-19.9108
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Table 60 presents the guidance correction information for the
third simulation mode run. The navigation inaccuracies at the
time of the first midcourse correction cause the commanded AV
of 40 m/sec to be more than 5 m/sec away from the required AV.
The actual impact parameter plane errors after the first midcourse
correction are 35 000 and 49 000 km in BT and B:R. Both the
subsequent commanded corrections of 5.39 and 2.62 m/sec are some-
what in error, but despite all the modeling errors, the actual
corrected trajectory pierces the B-plane with errors of only 18
km in B-T and 289 km in B-‘R. 1In setting up the problem it was
thought that, even if the corrected trajectory did reach the
Martian sphere of influence, which was considered unlikely, the
actual deviations from the nominal target conditions would be two
orders of magnitude higher than those that resulted. One possible
conclusion, therefore, discounting extreme good luck for this ex-
ample run, is that for this particular problem the navigation and
guidance process is relatively insensitive to bad a priori statis-
tics.

Simulation mode runs 4 and 5 were made with a 15 dimensional
augmented state including all nine station location coordinate
biases. The details for the runs are presented in table 61. The
only difference between the two was that the state transition
matrices were computed from analytical patched conic methods for
run 4 and by numerical differencing for run 5. Since there was
no significant alteration in the guidance correction information
for these augmented state runs, the two runs will be compared in
depth up to the time of the first midcourse correction.

Tables 62 and 64 give the orbit determination inaccuracies
for the two runs over the first five days of the trajectory. For
about the first day and a half of the hypothetical flight, the
assumption that the trajectory is an Earth-based hyperbola is a
fairly accurate one. At 1.3 days after injection, the runs ex--
hibit similar orbit determination inaccuracies. Then, as the
Sun begins to exert a non-negligible pull on the spacecraft, the
conic state transition matrices no longer represent good approxi-
mations. After five days of tracking, the orbit determination
gecuracies for run 5, which used state transition matrices com-
puted by numerical differencing, are an order of magnitude higher.
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TABLE 60.- GUIDANCE

CORRECTION INFORMATION FOR SIMULATION MODE RUN 3

Correction | ¢ 5 4aye At 30 days At 180 days
1st midcourse |2nd midcourse {3rd midcourse
Date
[av ], m/sec 40,4853 5.3887 2.6231
com
AV, m/sec X = -32.5252 -4.6855 2.4977
Y= -4.1989 2.6470 -0.6717
Z= =-20.7245 0.2782 0.4368
Voorfece® Msec| X = -37.3665 -4.3559 2.5241
P Y= -2.0863 2.2332 | -0.6404
Z= -19.5097 0.3125 0.2379
BAV, m/sec X= -0.2087 0.0003 0.0086
Y= -0.0550 -0.0023 0.0076
Z= +40.5658 -0.0483 -0.0387
AB*T 5 km 35 847.544 -4 878.663 19.156
nav
OB'R_ 5 km -51 877.041 1 870.005 |-353.954
nav
AB-T , km -809.939 27.342 -1.581
exec
‘R, km 2850.638 325.837 6k . T4k
exec
AB*T , km 35 037.605 -4 851.321 17.575
total
AB*R , km -49 026.404 2 195.842 |-289.210
total
o“p. s lm® 8 507 319 159 831 | 4619.62
o“p.p» km® 31 778 078 597 355 | 4346.24
kg .o 1.202 -12.140 0.250
kp.g -0.871 2.844 -4,398




TABLE 61,- CHANGES IN CONDITIONS FOR SIMULATION MODE RUNS 4 AND 5

Quasi=linear filtering events only at 5, 30, 180 days (after cor-

rection)
Dynamic noise constants k = 10722 km?/sec*
Assumed and actual measurement noises c% = 25 x 107% km?
02 = 9 x 1072 km?/sec?
D

Same assumed and actual execution errors as in Run 1

Same measurement schedule as in Run 1

Augmented state for both runs IAUG = 6, dimension of state vector

is 15 including 9 station location biases

Actual station location biases

AR] = =10 m A8 = -1 x 107% rad Ay =
ARy = 10 m 28y = 1 x 10-% rad Apy =
AR3 = -10 m AB3 = -1 x 107% rad Adpz =

Injection covariance is diagonal

g2

P for all positions = 1 km?

g2

v for all velocities = 9 m?/sec?

for all radius biases = 400 m?
for all latitude biases = 4 x 10712 rad?

cé for all longitude biases = 4 x 10712 rad?

For Run 4: "state transition matrices from patched conie

For Run 5: state transition matrices from numerical differencing

1 x 1076 rad
-~1. % 107% rad

1 x 107® rad
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Tables 63 and 65 compare the estimated values for the nine
augmented parameters from the two runs. It should be mentioned
that for both runs the processed covariance matrix for the aug-
mented parameters did not undergo any significant change. In
neither run did the estimation algorithm "think" it had substan-
tially reduced the parameter errors after five days of tracking.
Recall that the augmented state vector run of the error analysis
mode also showed little or no change during the flight in the
uncertainties associated with the station location biases.

The estimated parameter values of table 63 demonstrate an in-
teresting phenomenon of augmented orbit determination algorithms.
Because of the incorrect state transition matrices, the algorithm
encounters very large measurement residuals that it must account
for by estimating the state vector. It effectively parcels out
the error to all available components of the state based on the
assumed uncertainties. Since the process noise used for this ex-
ample is small compared to the dynamic modeling error induced by
the improper state transition matrices, the estimation process,
in its attempt to lower the residuals, estimates inordinately
large values for the station location biases. Notice from table
63 that during the first 1.3 days, during which time the conic
state transition matrices are still good approximations, the esti~

mated parameter values are still much less than their actual values.

During the Earth-Sun Transition region, however, the measurement
residuals become larger than anticipated and the parameter esti-
mates vary wildly. 1In effect, the orbit determination algorithm
is trying to explain the residuals by allocating the difference
to all components of its state vector. Thus, after five days the
process has a ridiculously high estimate of all the station loca-~
tion biases.

By contrast, considering table 65, the simulation mode run
with accurate state transition matrices from numerical differ-
encing estimates the augmented parameters more reasonably. At the
end of 4.6 days of tracking all parameter estimates are less in
magnitude than the actual biases and six of the estimates even
have the correct sign.

An important conclusion should be drawn from this demonstra-
tion. When augmenting a state vector to include parameters whose
uncertainties are relatively small and do not significantly influ-
ence the entire process, only if the dynamic model and computa-
tional scheme are nearly perfect can any validity be given to the
resulting parameter estimates. The smallest amount of dynamic
modeling insufficiency, if unaccounted for in the estimation algo-
rithm, can lead to totally erroneous values for the estimated
augmented parameters.

227



0T ¥ 1917¢- | 5 01 % 16L°S SL5°6H=| o 01T X 89°6 | o 0T ¥ €8071~ 786°CL~ | 5. 0T X 8E1T°1 | 5 0T X 9€6°6- 08076501 SI 6’y
.01 X ZIE"2-{ o 01 ¥ 962°8 00£°9€-| .01 % %28°1 | ¢ 01 X 68%" 1~ £89°261~| o 0T X 2%9°6 | o 01 X 081°8~ 6ET00T{ #1 9°%
e 0T ¥ 965°2- | 5 01 ¥ 0£8°¢~ 886°89- | o 0T X 60%°€ | o 0T ¥ 649G~ £80°%91-| ¢ 0T ¥ 60S2°T| g OT X €££S°1 9Lt 0ET] €1 Ty
e 0T X %€9°T~ | o 01 ¥ 295" 2~ £88°6%- | o 0T ¥ 990°T | o 0T % Zz8"¢€~ £22°01C | o OT X £SS™T | o 01 X 405°T £E6°SOT| 21 L€
20T X 69%'% | 5 0T X 966°1 ©61°¢ L 0T X 9gk’¢c b, 01 X 0959~ 96678 | , 0T ¥ 682°9-] 5 01 ¥ L6%'T zoLt0e~] 11 €€
.01 ¥066°8- | , 01 ¥ £98°%- |z 0T ¥ S11°8 | ,_0T1 ¥ 220°9-| , 01 X 8/%°¢ EEY°ST~ | o 01 ¥ 86£"T | 5 01 % g4g 1~ 756°¢1 01 0t
20T ¥ 816°8-| ,_0T X 9i%°g- A 201 X 20279 , 0T X LeL’S EYE°GT~ | o 0T ¥ SLE'T | o 0T X €L€°1- Z68°¢1 6 6°¢
.01 ¥ Lg€°2- | , 0T X 09%°¢- 8677 ¢ .01 X €267~ | , 0T ¥ 980°¢ T6%°62- | ,01 ¥ 505°9 | 5 0T X 8z%° 1~ 96%°8 8 9°¢
L.0T X 9£2°1- | ,_OT ¥ 669°6- 609" %~ .01 X €6276- | , 01 X 685°¢ 91£°02- | ¢ 0T X 0%0°1 | g 01 ¥ €651~ 65121 | ¢ (A4
4,01 * z68%¢-} , 0T ¥ 2S0°¢€ 96.°1- 6. 0T % 9587 |, 01 % 6/5°¢- 2 9T | , 01 X L29°€ | ,_OT ¥ Len'% %6660 9 L1
L. 0T X 0£T°9- | , 01 X 99%"¥ §56°1- ,.0T ¥ 669°% |, 0T X €I1°6- 820" 1 ,.0T X 916"T | o 01 X 006°9 206170 S €1
£ 0T X LOT°1- | 4 0T ¥ 8T%'¢€- 2Ly 1= 20T X 980°T | g 0T X [8E"%~ 602°€ s.0T X 261°9 | g 01 X 655"/ | 0T X I81°L-| % 0°1
e 01 X 122°% | g 0T % 288°C |z 0T %X z%g"1 6-0T X 926"6 | 5 01 ¥ €29°2- 611970~ 80T X €979~ | o 0T * 94g"L- 57T 0~ € 60
0 0 0 01-0T X %086 | 5 01 X 96%°1~ | 5 0T ¥ 09%°€-|57.0T X 09T°T | 4 0T % 509°¢- |01 ¥ O4%°¢ 4 9°0

0 0 0 0 0 0 o101 ¥ 665°¢ | o 0T X 6£T"¢- |01 X %£8"Yy 1 20

o-0T X 000°1 | 5.0T ¥ 000°1 000701~ | o-0T ¥ 000°1- { o.0T ¥ 000"1 000701 5.0T ¥ 000°1 | .01 ¥ 0001~ 000°01~ | =--~ | SUOTIETAID
jen3oy

pex “£4Q pe1 “£6Q w ‘EyQ pex ‘Shg pe1 ‘ZgQ w ‘2yQ pea ‘Tog pe2 ‘TeQ w “TyQ ‘o | shep fowry

e ¥ ¥ v ¥ ¥ v v ~ sesy | Lxoxoalmay

¥ NOY HAOW NOILVINWIS ¥04 SHNTVA WALIWVIVd (ILVWILSH -°€9 TAT4VL

228



1000° 2700 "~ 8000° 60€€°0 790L° 1~ 96¢2¢°0 71 9°%
LT100° %7€00 "~ S000°- G128°0 %7208 ° 1~ L791°0- €1 [
9100° T€00°- 7000 °- WNON.O [A4A R & T6€1°0- (A L€
200" T700°- ¢000 °- €716°0 T6G€° 1 LL20 "0~ 11 €¢
%200°- #%700 - ¢c00° 880T1°0- 10660~ L€67°0 01 0°¢
#200° LECO" 9600 °- €TTL°0 AN S8I% " 1- 6 6°C
6500° 0¢10° 710"~ 81601 (A TANNY , 7%69° - 8 9°¢
¢G00° 8T10° 7€10°~ £2eL 0 Go9v8°1 8¢G0 "¢~ L [
7£00° 7010° CTI10"- €217°0 7761°1 A TA NN 9 L1
0700 - 1910° 010"~ GETy7°0- EATAAN! £€T6L°0- g €1
%7220~ 910" ¢200°- TE09°1- 8.76°0 €0L0°0 7 0°1
120"~ 1210° 1200° 70CL 1~ L£9%%7°0 ¢99%7°0 1 6°0
G9¢0°0- | 9800°~ €€C0" T8 1- ¢L10° T~ 9€9¢°1 [4 9°0
8€90°0~ | 9€01°0 L0€0*0- | 6088°0- T160L°1 £G8Z°0- 1 <0
0006°1- | 000¢°T 0006°1- | 000670 0005°0- 000<°0 0 0
aomm\E “umm\E nuwm\E o ‘ga- 7p| wi ‘xe- xp| Wi ‘xe- ¥p *ou | sfep ‘awt]
78~ 2P A9~ 2P Q- XP S 3 5 seap | Lxozoefeay
- v -

G NNY HOOW NOIIVIOWIS ¥0d SHIDVANIIVNI

NOTIVNIWSALIA I19¥0 - %79 HIIVL

229



L. 01T ¥ %0872 , 01 X TIL°€ | £ O1 X %678~ | o 0T X 218%8-; , 01 ¥ 8€Z¢ 2~ 9GL°9~ | ,_ 01 X 6£2'€ | ,_ 0T X 602°C~| 0T X Tyy’'8~| %1 979
20T % 981°Z-1 5 0T X 50976 A AN 20T X BIL7T-[ ¢ OT X 866°% £€50°¢- | , 01 ¥ €86°€ | , OT ¥ 786"1~] 4 01 X €50°¢~ | €1 A
2 0T X £19°2~ | g 0T X 19276 126 T~ 20T ¥ 065" 1~ g 0T ¥ €86°¢ g28'y~ | , 01 X 68T°% | , 01 X £¥8°Z-], 01 ¥ 148°C 41 L7E
e 0T X GL6°% | , 0T X 6£2°1 | ¢ 0T X 816°9- | , OT X 6/6°€~| g 0T ¥ 9%9°8 641~ |, 0T X £19°¢ 1 , 0T X 6SE€°1~], 0T ¥ €5£°9~ 1 11 £'e
4.0 ¥ /22€°T-1 , 0T ¥ {981~ 68€" 1~ 2,01 * 028" %=1 , 0T X 908"1 SeL = | , 0T X 922°9 | , 01 X €60°6- 9926 01 0'e
,.0T ¥ %8/°, |, 0T X 82979~ 1 {_ 0T ¥ €9.°8 9,01 ¥ £¥1°T~[ ,_0T ¥ 8I%'8 188°%~ [ , 0T * 9€8°¢ | , OT ¥ S/0°¢~ 9€T € 6 6'C
o 0T X #80°T | ,_ 0T X #%2°6~{ £ 01 ¥ 280°%#~ | o 0T ¥ T1€0" 1~y , OT ¥ €4T°9 254701~ g OT X €66°%~| ., 0T X €6€°6-|- 0T X 618°6- | £ 'z
L.0T X€0S°T |, 0T X Zyp°T | ¢ 0T X 9%276~ | 5 0T ¥ 9S0°%~i , 01 ¥ 9S.°1- €9878- | , 01 ¥ 090°T~| , 0T X 669°2~{; 0T X 8€6°€~ | ¢ €1
L.01T X2S%'g | o OT X 6886~ |  OT ¥ 199°8~ [ ,_OT ¥ %88"1-} 5 01 ¥ gTC’L 089°6~ | ,_OT ¥ 6/S"T~{ , 01 X Z60°C~|7 0T X G96"%-{ € 6°0
0 0 0 o101 X 890°C | o 0T X £04°9- {2 0T X TEL'TI~{o7 0T ¥ £10°T | 5 0T ¥ G987C-| 0T X %i€"y 4 970

o 0 0 0 0 Q o101 ¥ 629°€ | 5 01 ¥ Z62°2~|c 0T X 9(8"% 1 0

5. 0T ¥000°T | 5 0T ¥ 000°1 000°01~ | o 0T X 000°1-| o 0T X 000°1 000°0T | .01 X 000°T | 9. 01 ¥ 000" 1~ 00001~ | ===~ m:Oﬂumwwwv
T8N0y

PRI ‘€HQ pex ‘€9Q w ‘eyq PRl ‘Shq pex ‘Zog w ‘EygQ pea ‘ThQ pea ‘TgqQ w ‘Tyg *oyN | sdep ‘awrn

e v M > - ~ - - ~ seapR | Ax0309lRa]

"y

NOY F00W NOIIVINWIS ¥04 SANTIVA WHLIWVIVA CIIVAILSE -°C9 F19VI

230



Table 66 presents numerous elements, at selected trajectory
epochs, of the state transition matrices used for runs 4 and 5.
The larger terms are in significant agreement throughout, although

two of the smaller components, ®15 and @24, disagree consid-

erably in the tramnsition region. The relatively small differences
displayed in the tables is all that is necessary for the improper
parameter estimation of run 4.
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